【摘要】OxyBAC如圖、是單位圓上的點(diǎn),是圓與軸正半軸的交點(diǎn),點(diǎn)的坐標(biāo)為,三角形為正三角形.(Ⅰ)求;(Ⅱ)求的值.答案:(Ⅰ)因?yàn)辄c(diǎn)的坐標(biāo)為,根據(jù)三角函數(shù)定義可知,,所以(Ⅱ)因?yàn)槿切螢檎切危?,,?/span>
2025-01-17 10:05
【摘要】已知函數(shù)⑴若,求的值;⑵若為常數(shù),且,試討論方程的解的個(gè)數(shù)。答案:解:(1);,(2)①時(shí),方程無(wú)解;②時(shí),,方程有唯一解;時(shí),,方程有唯一解;③時(shí),或或,方程有三個(gè)解。來(lái)源:題型:解答題,難度:中檔函數(shù)的反函
2025-01-18 09:20
【摘要】在⊿ABC中,BC=,AC=3,sinC=2sinA(I)求AB的值:(II)求sin的值.答案:(Ⅰ)在△ABC中,根據(jù)正弦定理,于是AB=(Ⅱ)在△ABC中,根據(jù)余弦定理,得cosA=于是sinA=從而sin2A=2sinAcosA=,cos2A=cos2A-sin2A=.所以sin(
2025-01-17 09:48
【摘要】已知f(x)是偶函數(shù),且f(x)=cosqsinx-sin(x-q)+(tanq-2)sinx-sinq的最小值是0,(1)求tanq的值.(2)求f(x)的最大值及此時(shí)x的集合.答案:(1):f(x)=cosqsinx-(sinxcosq-cosxsinq)+(tanq-2)sinx-sinq=sinqcosx+(tanq-2)sin
2025-01-17 11:39
【摘要】設(shè)是某三角形的最大內(nèi)角,且滿足,則可能值構(gòu)成的集合是______________.(用列舉法表示)答案:來(lái)源:05上海競(jìng)賽題型:填空題,難度:較難方程的實(shí)數(shù)解的個(gè)數(shù)是()A.0 B.1 C.2 D.3答案:D來(lái)源:
【摘要】(文)已知向量與互相垂直,其中(1)求和的值(2)若,,求的值答案:【解析】(1),,即又∵,∴,即,∴又 ,(2)∵,,即又,∴.來(lái)源:09年高考廣東卷題型:解答題,難度:容易求證:(cos108°-isin108°)(cos7
2025-01-18 09:16
【摘要】(文)已知ΔABC的角A、B、C所對(duì)的邊分別是a、b、c,設(shè)向量,,.(1)若//,求證:ΔABC為等腰三角形;(2)若⊥,邊長(zhǎng)c=2,角C=,求ΔABC的面積.答案:證明:(1)即,其中R是三角形ABC外接圓半徑,.為等腰三角形(2)由題意可知由余弦定理可知,.
【摘要】設(shè)函數(shù)f(x)=cos(2x+)+sinx.(1)求函數(shù)f(x)的最大值和最小正周期.(2)設(shè)A,B,C為ABC的三個(gè)內(nèi)角,若cosB=,,且C為銳角,求sinA.答案:(1)f(x)=cos(2x+)+sinx.=所以函數(shù)f(x)的最大值為,最小正周期.(2)==-,所以,因?yàn)镃為銳角,所以,又因?yàn)樵贏BC
2025-01-17 11:40
【摘要】預(yù)測(cè)數(shù)據(jù)庫(kù)知識(shí)數(shù)據(jù)庫(kù)高端數(shù)據(jù)庫(kù)技能數(shù)據(jù)庫(kù)第四章三角函數(shù)與解三角形三角函數(shù)、同角三角函數(shù)與誘導(dǎo)公式高考趨勢(shì)交流高端數(shù)據(jù)庫(kù)經(jīng)典例題備選1~56~1011~12知識(shí)數(shù)據(jù)庫(kù)技能數(shù)據(jù)庫(kù)預(yù)測(cè)數(shù)據(jù)庫(kù),涉及的公式很多,常與實(shí)際問題相結(jié)合,因此必須牢固掌握.
2025-03-25 05:33
【摘要】第二章三角、反三角函數(shù)一、考綱要求、弧度的意義,能正確進(jìn)行弧度和角度的互換。、余弦、正切的定義,了解余切、正割、余割的定義,掌握同角三角函數(shù)的基本關(guān)系式,掌握正弦、余弦的誘導(dǎo)公式,理解周期函數(shù)與最小正周期的意義。、余弦、正切公式,掌握二倍角的正弦、余弦、正切公式。,進(jìn)行簡(jiǎn)單三角函數(shù)式的化簡(jiǎn),求值和恒等式的證明。、余弦函數(shù),正切函數(shù)的圖像和性質(zhì),會(huì)用“五點(diǎn)法”畫正弦
2024-08-15 23:44
【摘要】數(shù)學(xué)輔導(dǎo)講義年級(jí):高一授課類型任意角的三角函數(shù)教學(xué)內(nèi)容初中銳角的三角函數(shù)是如何定義的?在中,設(shè)對(duì)邊為,對(duì)邊為,對(duì)邊為,銳角的正弦、余弦、正切依次為.角推廣后,這樣的三角函數(shù)的定義不再適用,我們必須對(duì)三角函數(shù)重新定義。1.三角函數(shù)定義在直角坐標(biāo)系中,
2025-05-19 00:51
【摘要】(一)1.2.2同角三角函數(shù)的基本關(guān)系(一)【學(xué)習(xí)要求】1.能通過(guò)三角函數(shù)的定義推導(dǎo)出同角三角函數(shù)的基本關(guān)系式.2.能運(yùn)用同角三角函數(shù)的基本關(guān)系式進(jìn)行三角函數(shù)式的求值和計(jì)算.本課時(shí)欄目開關(guān)填一填研一研練一練(一)【學(xué)法指導(dǎo)】1.推導(dǎo)和牢記同角三角函數(shù)間的基本
2024-08-16 04:25
【摘要】12、任意角的三角函數(shù)(1)一、教學(xué)內(nèi)容分析:高一年《普通高中課程標(biāo)準(zhǔn)教科書·數(shù)學(xué)(必修4)》(人教版A版)第12頁(yè)任意角的三角函數(shù)第一課時(shí)。本節(jié)課是三角函數(shù)這一章里最重要的一節(jié)課,它是本章的基礎(chǔ),主要是從通過(guò)問題引導(dǎo)學(xué)生自主探究任意角的三角函數(shù)的生成過(guò)程,從而很好理解任意角的三角函數(shù)的定義。在《課程標(biāo)準(zhǔn)》中:三角函數(shù)是基本初等函數(shù),
2024-11-26 03:03
【摘要】綿陽(yáng)第一中學(xué)教學(xué)課件設(shè)計(jì):雷均建1.任意角的三角函數(shù)第一課時(shí)三角函數(shù)的定義第一章三角函數(shù)綿陽(yáng)第一中學(xué)教學(xué)課件設(shè)計(jì):雷均建復(fù)習(xí)回顧:在初中我們是如何定義銳角三角函數(shù)的?OabMPc?sin????cos??tancacb
2025-07-21 08:11
【摘要】任意角的三角函數(shù)角的范圍已經(jīng)推廣,那么對(duì)任一角是否也能像銳角一樣定義其四種三角函數(shù)呢??我們已經(jīng)學(xué)習(xí)過(guò)銳角三角函數(shù),知道它們都是以銳角為自變量,以比值為函數(shù)值,定義了角的正弦、余弦、正切、余切的三角函數(shù),本節(jié)課我們研究當(dāng)角是一個(gè)任意角時(shí),其三角函數(shù)的定義及其幾何表示.???任意角的三角函數(shù)定義
2025-07-26 04:15