freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

ok精品解析:18屆全國普通高等學(xué)校招生統(tǒng)一考試數(shù)學(xué)浙江卷解析版(參考版)

2025-03-21 20:19本頁面
  

【正文】 A1A=4, C1C=1, AB=BC=B1B=2. (Ⅰ)證明: AB1⊥平面 A1B1C1; (Ⅱ)求直線 AC1與平面 ABB1所成角的正弦值. 【答案】(Ⅰ)證明見解析;(Ⅱ) . 【解析】 【分析】 分析 :方法一:(Ⅰ)通過計算,根據(jù)勾股定理得 ,再根據(jù)線面垂直的判定定理得結(jié)論;(Ⅱ)找出直線 AC1 與平面 ABB1 所成的角,再在直角三角形中求解 . 方法二:(Ⅰ)根據(jù)條件建立空間直角坐標(biāo)系,寫出各點的坐標(biāo),根據(jù)向量之積為 0 得出 ,再根據(jù)線面垂直的判定定理得結(jié)論;(Ⅱ)根據(jù)方程組解出平面的一個法向量,然后利用與平面法向量的夾角的余弦公式及線面角與向量夾角的互余關(guān)系求解 . 【詳解】詳解:方法一: (Ⅰ)由得, 所以 . 故 . 由, 得, 由得, 由,得,所以,故 . 因此平面 . (Ⅱ)如圖,過點作,交直線于點,連結(jié) . 由平面得平面平面, 由得平面, 所以是與平面所成的角 . 由得, 所以,故 . 因此,直線與平面所成的角的正弦值是 . 方法二: (Ⅰ)如圖,以 AC 的中點 O 為原點,分別以射線 OB, OC 為 x, y 軸的正半軸,建立空間直角坐標(biāo)系 Oxyz. 由題意知各點坐標(biāo)如下: 因此 由得 . 由得 . 所以平面 . (Ⅱ)設(shè)直線與平面所成的角為 . 由(Ⅰ)可知 設(shè)平面的法向量 . 由即可取 . 所以 . 因此,直線與平面所成的角的正弦值是 . 點睛:利用法向量求解空間線面角的關(guān)鍵在于“四破”:第一,破“建系關(guān)”,構(gòu)建恰當(dāng)?shù)目臻g直角坐標(biāo)系;第二,破“求坐標(biāo)關(guān)”,準(zhǔn)確求解相關(guān)點的坐標(biāo);第三,破“求法向量關(guān)”,求出平面的法向量;第四,破“應(yīng)用公式關(guān)” . {an}的公比 q1,且 a3+a4+a5=28, a4+2 是 a3, a5的等差中項.?dāng)?shù)列 {bn}滿足 b1=1,數(shù)列 {( bn+1?bn) an}的前 n 項和為2n2+n. (Ⅰ)求 q 的值; (Ⅱ)求數(shù)列 {bn}的通項公式. 【答案】(Ⅰ);(Ⅱ) . 【解析】 【分析】 分析 :(Ⅰ)根據(jù)條件、等差 數(shù)列的性質(zhì)及等比數(shù)列的通項公式即可求解公比;(Ⅱ)先根據(jù)數(shù)列前 n 項和求通項,解得,再通過疊加法以及錯位相減法求 . 【詳解】詳解:(Ⅰ)由是的等差中項得, 所以, 解得 . 由得, 因為,所以 . (Ⅱ)設(shè),數(shù)列前 n項和為 . 由解得 . 由(Ⅰ)可知, 所以, 故, . 設(shè), 所以, 因此, 又,所以 . 點睛:用錯位相減法求和應(yīng)注意的問題: (1)要善于識別題目類型,特別是等比數(shù)列公比為負(fù)數(shù)的情形; (2)在寫出“”與“”的表達式時應(yīng)特別注意將兩式“錯項對齊”以便下一步準(zhǔn)確寫出“”的表達式; (3)在應(yīng)用錯位相減法求和時,若等比數(shù)列的公比為參數(shù),應(yīng)分公比等于 1和不等于 1 兩種情況求解 . ,已知點 P 是 y軸左側(cè) (不含 y 軸 )一點,拋物線 C: y2=4x上存在不同的兩點 A,
點擊復(fù)制文檔內(nèi)容
公司管理相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1