【摘要】一、函數(shù)極限的定義三、小結(jié)思考題二、函數(shù)極限的性質(zhì)第二節(jié)函數(shù)的極限一、函數(shù)極限的定義在自變量的某個(gè)變化過(guò)程中,如果對(duì)應(yīng)的函數(shù)值無(wú)限接近于某個(gè)確定的常數(shù),那么這個(gè)確定的數(shù)叫做自變量在這一變化過(guò)程中函數(shù)的極限。下面,我們將主要研究以下兩種情形:;的變化情形對(duì)應(yīng)的函數(shù)值任意接近于有限值自
2024-09-03 12:44
【摘要】§函數(shù)極限對(duì)于函數(shù)y=?(x),考察它的極限,考察自變量x在定義域內(nèi)變化時(shí),相應(yīng)的函數(shù)值的變化趨勢(shì)。;x???;x???;x??0;xx??0;xx??0;xx?種極限過(guò)程統(tǒng)一表示用記號(hào)6Xx?,下定義:如果在極限過(guò)程Xx?無(wú)限趨于)(xf,時(shí)當(dāng)則稱Xx?,)(
2025-01-23 05:31
【摘要】微積分rxdtdx?微積分微積分第二章極限與連續(xù)?數(shù)列的極限?函數(shù)的極限?變量的極限?無(wú)窮大量與無(wú)窮小量?極限的運(yùn)算法則?兩個(gè)重要的極限?函數(shù)的連續(xù)性微積分函數(shù)極限微積分.sin時(shí)的變化趨勢(shì)當(dāng)觀察函數(shù)??xxx播放1.自變量
2024-10-22 18:07
【摘要】;)()(任意小表示AxfAxf????.的過(guò)程表示???xXx.0sin)(,無(wú)限接近于無(wú)限增大時(shí)當(dāng)xxxfx?問(wèn)題:如何用數(shù)學(xué)語(yǔ)言刻劃函數(shù)“無(wú)限接近”.第二節(jié)函數(shù)極限的定義和性質(zhì)一、自變量趨向無(wú)窮大時(shí)函數(shù)的極限XX???A??Aoxy)(xfy?A定義1.設(shè)函數(shù)大于某一正數(shù)時(shí)有定義,若
2025-07-25 11:10
【摘要】二、數(shù)列的有關(guān)概念四、收斂數(shù)列的性質(zhì)五、小結(jié)思考題三、數(shù)列極限的定義第一節(jié)數(shù)列的極限一、引例“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無(wú)所失矣”1.割圓術(shù):播放——?jiǎng)⒒找?、引例R正六邊形的面積1A正十二邊形的面積2A????正
2024-09-03 12:40
【摘要】一、夾逼準(zhǔn)則二、單調(diào)有界收斂準(zhǔn)則四、小結(jié)思考題極限存在準(zhǔn)則兩個(gè)重要極限第五節(jié)三、連續(xù)復(fù)利連續(xù)復(fù)利一、夾逼準(zhǔn)則準(zhǔn)則Ⅰ如果數(shù)列nnyx,及nz滿足下列條件:,lim,lim)2()3,2,1()1(azaynzxynnnnnnn?????
2024-09-03 12:38
【摘要】一、六個(gè)基本積分二、待定系數(shù)法舉例三、小結(jié)第四節(jié)有理函數(shù)的積分有理函數(shù)的定義:兩個(gè)多項(xiàng)式的商表示的函數(shù)稱之為有理函數(shù).mmmmnnnnbxbxbxbaxaxaxaxQxP?????????????11101110)()(??其中m、n
2024-09-03 12:39
【摘要】主要內(nèi)容典型例題習(xí)題課第二章極限(一)極限的概念(二)連續(xù)的概念一、主要內(nèi)容左右極限兩個(gè)重要極限求極限的常用方法無(wú)窮小的性質(zhì)極限存在的充要條件判定極限存在的準(zhǔn)則無(wú)窮小的比較極限的性質(zhì)數(shù)列極限函
【摘要】第五節(jié)函數(shù)關(guān)系的建立例1在一條直線公路的一側(cè)有A、B兩村,其位置如圖1-1所示,公共汽車(chē)公司欲在公路上建立汽車(chē)站M.A、B兩村各修一條直線大道通往汽車(chē)站,設(shè)CM=x(km),試把A、B兩村通往M的大道總長(zhǎng)y(km)表示為x的函數(shù).ABCDM2kmx
2024-09-03 12:45
【摘要】一、函數(shù)的連續(xù)性的概念二、函數(shù)的間斷點(diǎn)四、小結(jié)思考題第七節(jié)函數(shù)的連續(xù)性三、初等函數(shù)的連續(xù)性一、函數(shù)的連續(xù)性(continuity)(increment).1221的增量稱為變量則變到終值從它的初值設(shè)變量uuuuuuu???注意:可正可負(fù);u?)1(.)2(的乘積與是一個(gè)整體,
2024-08-24 16:43
【摘要】一、一個(gè)方程的情形二、方程組的情形三、小結(jié)思考題第五節(jié)隱函數(shù)的求導(dǎo)公式0),(.1?yxF一、一個(gè)方程的情形隱函數(shù)存在定理1設(shè)函數(shù)),(yxF在點(diǎn)),(00yxP的某一鄰域內(nèi)具有連續(xù)的偏導(dǎo)數(shù),且0),(00?yxF,0),(00?yxFy,則方程0),(?yxF在點(diǎn)),
2024-08-24 16:41
【摘要】第六節(jié)經(jīng)濟(jì)學(xué)中的常用函數(shù)一、需求函數(shù)如果價(jià)格是決定需求量的最主要因素,可以認(rèn)為Q是P的函數(shù)。記作)(PfQ?則f稱為需求函數(shù).需求的含義:消費(fèi)者在某一特定的時(shí)期內(nèi),在一定的價(jià)格條件下對(duì)某種商品具有購(gòu)買(mǎi)力的需要.,bPaQ??線性需求函數(shù):常見(jiàn)的需求函數(shù):2cPbPaQ???二次
2024-08-24 11:12
【摘要】第一節(jié)數(shù)列極限的定義和性質(zhì)一、數(shù)列極限的定義定義:依次排列的一列數(shù)??,,,,21nxxx稱為無(wú)窮數(shù)列,簡(jiǎn)稱數(shù)列,記為}{nx.其中的每個(gè)數(shù)稱為數(shù)列的項(xiàng),nx稱為通項(xiàng)(一般項(xiàng)).例如;,2,,8,4,2??n;,21,,81,41,21??n}2{
2025-01-22 08:23
【摘要】§數(shù)列極限第二章極限與連續(xù)本章是微積分的基礎(chǔ),主要討論函數(shù)的極限與函數(shù)的連續(xù)性。??,,,,,321naaaa稱為數(shù)列,記為na其中稱為數(shù)列的通項(xiàng)或一般項(xiàng);??na正整數(shù)n稱為的下標(biāo)。na例如:;,2,,8,4,2??n}2{n;,1,,1,1,1
2025-08-08 06:53
【摘要】作業(yè)(一)————函數(shù),極限和連續(xù)一、填空題(每小題2分,共20分) .答案:提示:對(duì)于,要求分母不能為0,即,也就是;對(duì)于,要求,即;所以函數(shù)的定義域是2.函數(shù)的定義域是 ?。鸢福禾崾荆簩?duì)于,要求分母不能為0,即,也就是;對(duì)于,要求,即;所以函數(shù)的定義域是 ?。鸢福禾崾荆簩?duì)于,要求分母不能為0,即,也
2025-06-23 05:31