【摘要】含有絕對(duì)值的不等式問題我們?cè)诔踔袑W(xué)過絕對(duì)值的有關(guān)概念,請(qǐng)說出絕對(duì)值是怎樣定義的?當(dāng)時(shí),則有:Ra?????????????????.0;00;0aaaaaa那么與及的大小關(guān)系怎樣?aaa?問題這需要討論:;時(shí),aaaaa????
2024-12-05 01:13
【摘要】第一講不等式和絕對(duì)值不等式1、不等式1、不等式的基本性質(zhì):①、對(duì)稱性:傳遞性:_________②、,a+c>b+c③、a>b,,那么ac>bc;a>b,,那么ac<bc
2024-11-13 23:32
【摘要】課題:含有絕對(duì)值的不等式問題當(dāng)時(shí),則有:那么與及的大小關(guān)系怎樣?絕對(duì)值的定義:問題這需要討論:當(dāng)綜上可知:當(dāng)當(dāng)定理1:如果a,b是實(shí)數(shù),則當(dāng)且僅當(dāng)時(shí),等號(hào)成立.(1)從向量的角度看:不共線時(shí),由于定理1與三角形之間的這種聯(lián)
2024-08-16 15:37
【摘要】【解題回顧】本題解答過程中,通過不斷實(shí)施各種數(shù)學(xué)語言間的等價(jià)轉(zhuǎn)換脫去集合符號(hào)和抽象函數(shù)的“外衣”,找出本質(zhì)的數(shù)量關(guān)系是關(guān)鍵之所在.返回f(x)=x2+px+q,且集合A={x|x=f(x)},B={x|f[f(x)]=x}(1)求證AB;(2)如果A={-1,3},求B?要點(diǎn)
2024-11-10 14:29
【摘要】絕對(duì)值不等式課堂練習(xí):解不等式|3x-4|≤19類型一:或a0型延伸:例1解不等式|x2-5x+5|1?解:原不等式可轉(zhuǎn)化為-1x2-5x+51
2024-11-13 12:20
【摘要】立足教育開創(chuàng)未來·高中總復(fù)習(xí)(第一輪)·理科數(shù)學(xué)·全國(guó)版1第六章不等式第講(第一課時(shí))立足教育開創(chuàng)未來·高中總復(fù)習(xí)(第一輪)·理科數(shù)學(xué)·全國(guó)版2考點(diǎn)搜索●比較法●綜合法●分析法
2024-08-24 14:49
【摘要】·高中總復(fù)習(xí)(第1輪)·理科數(shù)學(xué)·全國(guó)版1第講3含絕對(duì)值的不等式和一元二次不等式第一章集合與簡(jiǎn)易邏輯·高中總復(fù)習(xí)(第1輪)·理科數(shù)學(xué)·全國(guó)版2考點(diǎn)搜索●含絕對(duì)值的不等式的解法●一元二次不等
【摘要】立足教育開創(chuàng)未來·高中總復(fù)習(xí)(第一輪)·理科數(shù)學(xué)·全國(guó)版1第六章不等式第講立足教育開創(chuàng)未來·高中總復(fù)習(xí)(第一輪)·理科數(shù)學(xué)·全國(guó)版2考點(diǎn)搜索●利用基本不等式證明不等式●運(yùn)用重要不等式求最值
2024-08-24 14:47
【摘要】立足教育開創(chuàng)未來·高中總復(fù)習(xí)(第一輪)·理科數(shù)學(xué)·全國(guó)版1第六章不等式第講立足教育開創(chuàng)未來·高中總復(fù)習(xí)(第一輪)·理科數(shù)學(xué)·全國(guó)版2考點(diǎn)搜索●應(yīng)用均值不等式求最值●應(yīng)用不等式求范圍●不等式
2024-09-02 08:58
【摘要】立足教育開創(chuàng)未來·高中總復(fù)習(xí)(第一輪)·理科數(shù)學(xué)·全國(guó)版1第六章不等式第講(第一課時(shí))立足教育開創(chuàng)未來·高中總復(fù)習(xí)(第一輪)·理科數(shù)學(xué)·全國(guó)版2考點(diǎn)搜索●一元一次不等式的解法●一元二次不等式的
【摘要】典型例題含絕對(duì)值不等式的解法例1?解絕對(duì)值不等式|x+3||x-5|.解:由不等式|x+3||x-5|兩邊平方得|x+3|2|x-5|2,即(x+3)2(x-5)2,x1.∴?原不等式的解集為{x|x1}.評(píng)析?對(duì)于兩邊都含“單項(xiàng)”絕對(duì)值的不等式依據(jù)|x|2=x2,可在兩邊平方
2025-03-27 23:42
【摘要】第三講絕對(duì)值不等式的解法【基本知識(shí)】(1)含絕對(duì)值的不等式|x|<a與|x|>a的解集不等式a>0a=0a<0|x|<a{x|-a<x<a}|x|>a{x|x>a或x<-a}{x|x∈R且x≠0}R注:|x|以及|x-a|±|x-b|表示的幾何意義(|x|表示數(shù)軸上的點(diǎn)x到原點(diǎn)的距離;|x-a|±|x-b
2024-08-29 16:51
【摘要】含絕對(duì)值的不等式含絕對(duì)值的不等式一、復(fù)習(xí)舊知,以舊悟新:一、復(fù)習(xí)舊知,以舊悟新:絕對(duì)值定義及基本性質(zhì):一、復(fù)習(xí)舊知,以舊悟新:絕對(duì)值定義及基本性質(zhì):1.定義:2.基本性質(zhì):2.基本性質(zhì):2.基本性質(zhì):二、提出問題,推導(dǎo)定理:二、提出問題,推導(dǎo)定理:二、提出問題,推導(dǎo)定理:
2024-11-06 18:44
【摘要】;銀行貸款銀行貸款;;如何,吶鞠言至少有哪個(gè)特殊手段能殺死咩醇吶個(gè)級(jí)數(shù)の掌控者.裊誠(chéng)殿主,也壹愣壹愣の.方才他還叫鞠言趕快離開回枯樹空間,吶還沒過幾個(gè)呼吸事間,鞠言就已經(jīng)干掉了咩醇.“該死!”羊蓼身影急速后退.“吶個(gè)鞠言有詭異手段,誰來幫俺壹起對(duì)付他?”羊蓼壹邊后退,壹邊向其他人求援.其他虛空申殿閣主以及副殿主,都在搏殺中,
2024-08-27 01:19
【摘要】§復(fù)習(xí)回顧:.00bcaccbabcaccbacbcaba??????????,那么,如果;,那么,如果;,那么如果2.絕對(duì)值的意義:??????????.0000時(shí),當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)xxxxxx1.不等式的性質(zhì):?
2025-07-28 13:30