freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

中考數(shù)學(xué)培優(yōu)(含解析)之二次函數(shù)附答案解析(參考版)

2025-03-31 07:11本頁面
  

【正文】 綜上所述,點P的坐標(biāo)為(-1,12)或(6,5)或(2,-3)或(3,-4)。當(dāng)時,與聯(lián)立,得,解得或。當(dāng)時,與聯(lián)立,得,解得或。易得,△BEH是等腰直角三角形,∴EH=。設(shè)BC與PQ的距離為h,則由S1=6S2得:,即。∴?!叩膶ΨQ軸是,B(5,0),∴A(1,0)?!郙N的最大值是?!弋?dāng)點M在拋物線在x軸下方時,N的縱坐標(biāo)總大于M的縱坐標(biāo)。(2)∵點M是拋物線在x軸下方圖象上的動點,∴設(shè)M。將B(5,0),C(0,5)代入,得,得。【詳解】解:(1)設(shè)直線BC的解析式為,將B(5,0),C(0,5)代入,得,得。(2)構(gòu)造MN關(guān)于點M橫坐標(biāo)的函數(shù)關(guān)系式,應(yīng)用二次函數(shù)最值原理求解。(1)求直線BC與拋物線的解析式;(2)若點M是拋物線在x軸下方圖象上的動點,過點M作MN∥y軸交直線BC于點N,求MN的最大值;(3)在(2)的條件下,MN取得最大值時,若點P是拋物線在x軸下方圖象上任意一點,以BC為邊作平行四邊形CBPQ,設(shè)平行四邊形CBPQ的面積為S1,△ABN的面積為S2,且S1=6S2,求點P的坐標(biāo)。又∵△AOQ≌△PQN,∴OQ=QN,∠AOQ=∠PQN,∴∠MOQ=∠HQN,∴△OQM≌△QNH(AAS),∴OM=QH,即x=﹣x2+2x+2+1,解得:x=(負(fù)值舍去),當(dāng)x=時,HN=QM=﹣x2+2x+2=,點M(,0),∴點N坐標(biāo)為(+,﹣1),即(,﹣1);或(﹣,﹣1),即(1,﹣1);如圖3,同理可得△OQM≌△PNH,∴OM=PH,即x=﹣(﹣x2+2x+2)﹣1,解得:x=﹣1(舍)或x=4,當(dāng)x=4時,點M的坐標(biāo)為(4,0),HN=QM=﹣(﹣x2+2x+2)=6,∴點N的坐標(biāo)為(4+6,﹣1)即(10,﹣1),或(4﹣6,﹣1)即(﹣2,﹣1);綜上點M1(,0)、N1(,﹣1);M2(,0)、N2(1,﹣1);M3(4,0)、N3(10,﹣1);M4(4,0)、N4(﹣2,﹣1).【點睛】本題考查的是二次函數(shù)的綜合題,涉及到的知識有待定系數(shù)法、等邊三角形的性質(zhì)、全等三角形的判定與性質(zhì)等,熟練掌握待定系數(shù)法求函數(shù)解析式、等邊三角形的性質(zhì)、全等三角形的判定與性質(zhì)、運用分類討論思想是解題的關(guān)鍵.11.在平面直角坐標(biāo)系中,拋物線過點,與y軸交于點C,連接AC,BC,將沿BC所在的直線翻折,得到,連接OD.(1)用含a的代數(shù)式表示點C的坐標(biāo).(2)如圖1,若點D落在拋物線的對稱軸上,且在x軸上方,求拋物線的解析式.(3)設(shè)的面積為S1,的面積為S2,若,求a的值.【答案】(1);(2) 拋物線的表達式為:;(3) 或【解析】【分析】(1)根據(jù)待定系數(shù)法,得到拋物線的表達式為:,即可求解;(2)根據(jù)相似三角形的判定證明,再根據(jù)相似三角形的性質(zhì)得到,即可求解;(3)連接OD交BC于點H,過點H、D分別作x軸的垂線交于點N、M,由三角形的面積公式得到,而,即可求解.【詳解】(1)拋物線的表達式為:,即,則點;(2)過點B作y軸的平行線BQ,過點D作x軸的平行線交y軸于點P、交BQ于點Q,∵,∴,設(shè):,點,∴,∴,其中:,將以上數(shù)值代入比例式并解得:,∵,故,故拋物線的表達式為:;(3)如圖2,當(dāng)點C在x軸上方時,連接OD交BC于點H,則,過點H、D分別作x軸的垂線交于點N、M,設(shè):,,而,則,∴,則,則,則,則,則,解得:(舍去負(fù)值),解得:(不合題意值已舍去),故:.當(dāng)點C在x軸下方時,同理可得:;故:或【點睛】本題考查的是二次函數(shù)綜合運用、一次函數(shù)、三角形相似、圖形的面積計算,其中(3)用幾何方法得出:,是本題解題的關(guān)鍵.12.如圖,已知A(﹣2,0),B(4,0),拋物線y=ax2+bx﹣1過A、B兩點,并與過A點的直線y=﹣x﹣1交于點C.(1)求拋物線解析式及對稱軸;(2)在拋物線的對稱軸上是否存在一點P,使四邊形ACPO的周長最?。咳舸嬖?,求出點P的坐標(biāo),若不存在,請說明理由;(3)點M為y軸右側(cè)拋物線上一點,過點M作直線AC的垂線,垂足為N.問:是否存在這樣的點N,使以點M、N、C為頂點的三角形與△AOC相似,若存在,求出點N的坐標(biāo),若不存在,請說明理由.【答案】(1)拋物線解析式為:y=,拋物線對稱軸為直線x=1;(2)存在P點坐標(biāo)為(1,﹣);(3)N點坐標(biāo)為(4,﹣3)或(2,﹣1)【解析】分析:(1)由待定系數(shù)法求解即可;(2)將四邊形周長最小轉(zhuǎn)化為PC+PO最小即可;(3)利用相似三角形對應(yīng)點進行分類討論,構(gòu)造圖形.設(shè)出點N坐標(biāo),表示點M坐標(biāo)代入拋物線解析式即可.詳解:(1)把A(2,0),B(4,0)代入拋物線y=ax2+bx1,得 解得 ∴拋物線解析式為:y=x2?x?1∴拋物線對稱軸為直線x==1(2)存在使四邊形ACPO的周長最小,只需PC+PO最小∴取點C(0,1)關(guān)于直線x=1的對稱點C′(2,1),連C′O與直線x=1的交點即為P點.設(shè)過點C′、O直線解析式為:y=kx∴k=∴y=x則P點坐標(biāo)為(1,)(3)當(dāng)△AOC∽△MNC時,如圖,延長MN交y軸于點D,過點N作NE⊥y軸于點E∵∠ACO=∠NCD,∠AOC=∠CND=90176。3,∵k<0,∴k=﹣3;(3)如圖2,設(shè)拋物線L1的解析式為y=﹣x2+2x+1+m,∴C(0,1+m)、D(2,1+m)、F(1,0),設(shè)P(0,t),(a)當(dāng)△PCD∽△FOP時,∴,∴t2﹣(1+m)t+2=0①;(b)當(dāng)△PCD∽△POF時,∴,∴t=(m+1)②;(Ⅰ)當(dāng)方程①有兩個相等實數(shù)根時,△=(1+m)2﹣8=0,解得:m=2﹣1(負(fù)值舍去),此時方程①有兩個相等實數(shù)根t1=t2=,方程②有一個實數(shù)根t=,∴m=2﹣1,此時點P的坐標(biāo)為(0,)和(0,);(Ⅱ)當(dāng)方程①有兩個不相等的實數(shù)根時,把②代入①,得:(m+1)2﹣(m+1)+2=0,解得:m=2(負(fù)值舍去),此時,方程①有兩個不相等的實數(shù)根t1=t2=2,方程②有一個實數(shù)根t=1,∴m=2,此時點P的坐標(biāo)為(0,1)和(0,2);綜上,當(dāng)m=2﹣1時,點P的坐標(biāo)為(0,)和(0,);當(dāng)m=2時,點P的坐標(biāo)為(0,1)和(0,2).【點睛】本題主要考查二次函數(shù)的應(yīng)用,涉及到待定系數(shù)法求函數(shù)解析式、割補法求三角形的面積、相似三角形的判定與性質(zhì)等,(2)小題中根據(jù)三角形BMN的面積求得點N與點M的橫坐標(biāo)之差是解題的關(guān)鍵;(3)小題中運用分類討論思想進行求解是關(guān)鍵.9.某商場銷售一種商品的進價為每件30元,銷售過程中發(fā)現(xiàn)月銷售量y(件)與銷售單價x(元)之間的關(guān)系如圖所示.(1)根據(jù)圖象直接寫出y與x之間的函數(shù)關(guān)系式.(2)設(shè)這種商品月利潤為W(元),求W與x之間的函數(shù)關(guān)系式.(3)這種商品的銷售單價定為多少元時,月利潤最大?最大月利潤是多少?【答案】(1)y=;(2)W=。時,如圖3,作PK⊥x軸,AQ⊥PK,則PK=﹣t2+2t+3,AQ=t,KE=3﹣t,PQ=﹣t2+2t+3﹣3=﹣t2+2t,∵∠APQ+∠KPE=∠APQ+∠PAQ=90176?!唷螾AG=∠APG=45176。①當(dāng)∠PAE=90176?!嘀荒苡小螾AE=90176。時,作PG⊥y軸,利用等腰直角三角形的性質(zhì)可得到關(guān)于t的方程,可求得t的值;當(dāng)∠APE=90176?;颉螦PE=90176。中考數(shù)學(xué)培優(yōu)(含解析)之二次函數(shù)附答案解析一、二次函數(shù)1.(10分)(2015?佛山)如圖,一小球從斜坡O點處拋出,球的拋出路線可以用二次函數(shù)y=﹣x2+4x刻畫,斜坡可以用一次函數(shù)y=x刻畫.(1)請用配方法求二次函數(shù)圖象的最高點P的坐標(biāo);(2)小球的落點是A,求點A的坐標(biāo);(3)連接拋物線的最高點P與點O、A得△POA,求△POA的面積;(4)在OA上方的拋物線上存在一點M(M與P不重合),△MOA的面積等于△POA的面積.請直接寫出點M的坐標(biāo).【答案】(1)(2,4);(2)(,);(3);(4)(,).【解析】試題分析:(1)利用配方法拋物線的一般式化為頂點式,即可求出二次函數(shù)圖象的最高點P的坐標(biāo);(2)聯(lián)立兩解析式,可求出交點A的坐標(biāo);(3)作PQ⊥x軸于點Q,AB⊥x軸于點B.根據(jù)S△POA=S△P
點擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1