【總結(jié)】中考二次函數(shù)綜合壓軸題型歸類一、??键c匯總1、兩點間的距離公式:2、中點坐標(biāo):線段的中點的坐標(biāo)為:直線()與()的位置關(guān)系:(1)兩直線平行且(2)兩直線相交(3)兩直線重合且(4)兩直線垂直3、一元二次方程有整數(shù)根問題,解題步驟如下:①用和參數(shù)的其他要求確定參數(shù)的取值范圍;②解方程,求出方程的根;(兩種形式:分式、二次根式)
2025-04-04 03:00
【總結(jié)】二次函數(shù)知識點總結(jié)及相關(guān)典型題目第一部分基礎(chǔ)知識:一般地,如果是常數(shù),,那么叫做的二次函數(shù).(1)拋物線的頂點是坐標(biāo)原點,對稱軸是軸.(2)函數(shù)的圖像與的符號關(guān)系.①當(dāng)時拋物線開口向上頂點為其最低點;②當(dāng)時拋物線開口向下頂點為其最高點.(3)頂點是坐標(biāo)原點,對稱軸是軸的拋物線的解析式形式為.的圖像是對稱軸平行于(包括重合)軸的拋物線.:的形
2025-04-04 02:44
【總結(jié)】二次函數(shù)中求點的坐標(biāo)(2009年郴州市)如圖11,已知正比例函數(shù)和反比例函數(shù)的圖像都經(jīng)過點M(-2,),且P(,-2)為雙曲線上的一點,Q為坐標(biāo)平面上一動點,PA垂直于x軸,QB垂直于y軸,垂足分別是A、B.(1)寫出正比例函數(shù)和反比例函數(shù)的關(guān)系式;(2)當(dāng)點Q在直線MO上運動時,直線MO上是否存在這樣的點Q,使得△OBQ與△OAP面積相等?如果存在,請求出點的坐標(biāo),如果不存
2025-04-07 02:05
【總結(jié)】二次函數(shù)復(fù)習(xí)二次函數(shù)一般考點:1、二次函數(shù)的定義2、二次函數(shù)的圖象及性質(zhì)3、求二次函數(shù)的解析式4、a,b,c符號的確定5、拋物線的平移法則6、二次函數(shù)與一元二次方程的關(guān)系7、二次函數(shù)(求最值)的綜合運用1、二次函數(shù)的概念1、y=-x2,,y=100-5x
2024-08-04 01:48
【總結(jié)】中考復(fù)習(xí)二次函數(shù)第26章復(fù)習(xí)1┃知識歸納┃一般地,形如(a,b,c是常數(shù),)的函數(shù),叫做二次函數(shù).[注意](1)等號右邊必須是整式;(2)自變量的最高次數(shù)是2;(3)當(dāng)b=0,c=0時,y=
2024-08-04 00:42
【總結(jié)】(2012南京市,24,8)某玩具由一個圓形區(qū)域和一個扇形區(qū)域組成,如圖,在⊙O1和扇形O2CD中,⊙O1與O2C、O2D分別相切于點A、B,已知∠CO2D=600,E、F是直線O1O2與⊙O1、扇形O2CD的兩個交點,且EF=24厘米,設(shè)⊙O1的半徑為x厘米.(1)用含x的代數(shù)式表示扇形O2CD的半徑;(2)若⊙O1、,當(dāng)⊙O1的半徑為多少時,該玩具的制作成本最?。?/span>
2025-04-04 04:24
【總結(jié)】f(x)=ax2+bx+c(x∈R)判別式a0a0△=0△0最值當(dāng)x=時,y最大值=當(dāng)x=時,y
2024-11-11 08:50
【總結(jié)】1.如圖,拋物線y=ax2+bx+c(a≠0)與y軸交于點C(0,4),與x軸交于點A和點B,其中點A的坐標(biāo)為(﹣2,0),拋物線的對稱軸x=1與拋物線交于點D,與直線BC交于點E.(1)求拋物線的解析式;(2)若點F是直線BC上方的拋物線上的一個動點,是否存在點F使四邊形ABFC的面積為17,若存在,求出點F的坐標(biāo);若不存在,請說明理由;2.已知在平面直
【總結(jié)】咸陽育才中學(xué)電子教案課題。二次函數(shù)的圖像主備郝妮濤審核人上課人上課時間教學(xué)目標(biāo)知識與能力:(1)理解二次函數(shù)中參數(shù)a,b,c,h,k對其圖像的影響。(2)掌握二次函數(shù)的性質(zhì)與圖象,掌握從函數(shù)的性質(zhì)推斷圖象的方研究法。過程與方法:掌握從函數(shù)解析式、性質(zhì)出發(fā)去認識函數(shù)圖象的高度理解和研究函數(shù)的方法。情感態(tài)度和價值觀:讓學(xué)生感受數(shù)學(xué)思想
【總結(jié)】二次函數(shù)考點分析★★★二次函數(shù)的圖像拋物線的時候應(yīng)抓住以下五點:開口方向,對稱軸,頂點,與x軸的交點,與y軸的交點.★★二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)一般式:y=ax2+bx+c,三個點頂點坐標(biāo)(-,).頂點式:y=a(x-h(huán))2+k,頂點坐標(biāo)對稱軸.,頂點坐標(biāo)(h,k)★★★abc作用分析│a│的大小決定了開口的寬
【總結(jié)】二次函數(shù)教學(xué)設(shè)計課型:新授課課時:一課時年級:九年級一、教材分析《二次函數(shù)》是浙教版《數(shù)學(xué)》九年級上冊中的第一章第一節(jié),是《義務(wù)教育課程標(biāo)準(zhǔn)》“數(shù)與代數(shù)”領(lǐng)域的內(nèi)容。二次函數(shù)是九年級的第一節(jié)函數(shù)課,初中涉及到的“一元一次方程”,“二元一次方程組”,“一次函數(shù)”,“一元二次方程”,“反比例函數(shù)”這幾章代數(shù)的學(xué)習(xí)都為接下來的函數(shù)的進一步學(xué)習(xí)奠定了基礎(chǔ)。“二次函數(shù)”的學(xué)習(xí)
2025-04-07 02:41
【總結(jié)】1、中考要求:1.經(jīng)歷探索、分析和建立兩個變量之間的二次函數(shù)關(guān)系的過程,進一步體驗如何用數(shù)學(xué)的方法描述變量之間的數(shù)量關(guān)系.2.能用表格、表達式、圖象表示變量之間的二次函數(shù)關(guān)系,發(fā)展有條理的思考和語言表達能力;能根據(jù)具體問題,選取適當(dāng)?shù)姆椒ū硎咀兞恐g的二次函數(shù)關(guān)系.3.會作二次函數(shù)的圖象,并能根據(jù)圖象對二次函數(shù)的性質(zhì)進行分析,逐步積累研究函數(shù)性質(zhì)的經(jīng)驗.
2025-01-10 10:56
【總結(jié)】中考數(shù)學(xué)二次函數(shù)(大題培優(yōu))附答案解析 一、二次函數(shù) 1.如圖,在平面直角坐標(biāo)系中,∠ACB=90°,OC=2OB,tan∠ABC=2,點B的坐標(biāo)為(1,0).拋物線y=﹣x2+bx+c經(jīng)過A...
2025-03-31 07:30
【總結(jié)】中考數(shù)學(xué)二次函數(shù)綜合經(jīng)典題含答案 一、二次函數(shù) 1.在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,拋物線y=ax2+bx+c與x軸交于點A(﹣1,0),B(3,0),與y軸交于點C(0,3),頂點為G....
2025-03-31 07:34
【總結(jié)】臨朐縣沂山風(fēng)景區(qū)大關(guān)初級中學(xué)二次函數(shù)——復(fù)習(xí)與小結(jié)臨朐縣沂山風(fēng)景區(qū)大關(guān)初級中學(xué)一、二次函數(shù)的概念及其關(guān)系式:形如__________(a,b,c是常數(shù),a≠0)的函數(shù).:(1)一般式:________
2025-06-21 12:24