【總結(jié)】專業(yè)資料分享人說幾何很困難,難點就在輔助線。輔助線,如何添?把握定理和概念。還要刻苦加鉆研,找出規(guī)律憑經(jīng)驗。三角形圖中有角平分線,可向兩邊作垂線。也可將圖對折看,對稱以后關(guān)系現(xiàn)。角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。線段垂直平分線,
2025-03-24 12:33
【總結(jié)】第一篇:輔助線幾何證明題 輔助線的幾何證明題 三角形輔助線做法 圖中有角平分線,可向兩邊作垂線。也可將圖對折看,對稱以后關(guān)系現(xiàn)。 角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看...
2024-10-22 20:13
【總結(jié)】幾何輔助線(圖)作法探討一些幾何題的證明或求解,由原圖形分析探究,有時顯得十分復(fù)雜,若通過適當?shù)淖儞Q,即添加適當?shù)妮o助線(圖),將原圖形轉(zhuǎn)換成一個完整的、特殊的、簡單的新圖形,則能使原問題的本質(zhì)得到充分的顯示,通過對新圖形的分析,原問題順利獲解。有許多初中幾何常見輔助線作法歌訣,下面這一套是很好的:人說幾何很困難,難點就在輔助線。輔助線,如何添?把握定理和概念。還要刻苦加鉆研,找
2025-04-04 03:02
【總結(jié)】梯形常用輔助線的做法常見的梯形輔助線基本圖形如下:,把梯形的腰、兩底角等轉(zhuǎn)移到一個三角形中,同時還得到平行四邊形.【例1】已知:如圖,在梯形ABCD中,.求證:.分析:平移一腰BC到DE,將題中已知條件轉(zhuǎn)化在同一等腰三角形中解決,即AB=2CD.證明:過D作,交AB于E. ∵AB平行于CD,且,
2025-06-22 15:18
【總結(jié)】專業(yè)資料分享常見輔助線的作法有以下幾種:1)遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題,思維模式是全等變換中的“對折”.2)遇到三角形的中線,倍長中線,使延長線段與原中線長相等,構(gòu)造全等三角形,利用的思維模式是全等變換中的“旋轉(zhuǎn)”.3)遇到角平分線,可以自
2025-05-16 02:07
【總結(jié)】論文標題:淺談初中幾何中添加輔助線的技巧作者:鄺淑瑩單位:三水中學附屬初中日期:2021-8-25聯(lián)系電話:15024263134淺談初中幾何中添加輔助線的技巧三水中學附屬初中數(shù)學科組鄺淑瑩摘要:在初中數(shù)學的學習中,平面幾何無疑占據(jù)著十
2025-06-07 06:58
【總結(jié)】幾何證明-常用輔助線(一)中線倍長法:例1、求證:三角形一邊上的中線小于其他兩邊和的一半。已知:如圖,△ABC中,AD是BC邊上的中線,求證:AD﹤(AB+AC)分析:要證明AD﹤(AB+AC),就是證明AB+AC2AD,也就是證明兩條線段之和大于第三條線段,而我們只能用“三角形兩邊之和大于第三邊”,但題中的三條線段
2025-06-25 21:39
【總結(jié)】圓的常用輔助線及作法嘗試練習一嘗試練習二數(shù)學歌訣作法及應(yīng)用弦心距直徑圓周角切線徑兩圓相切公切線中點圓心線兩圓相交公共弦嘗試練習圓的常用輔助線及作法常用思想圓是初中幾何學習中重要內(nèi)容,學好圓的有關(guān)知識,掌握正確的解題方法,對于提高學生
2025-01-18 17:52
【總結(jié)】中小學個性化輔導專家龍文教育學科教師輔導講義學員姓名:年級:所在學校:教師:課題作輔助線的常用方法授課時間:教學目標1構(gòu)造等腰三角形2構(gòu)造"全等三角形"重點、難點取線段中點構(gòu)造全等三角形。連接已知點,構(gòu)造"全等三角形"或"等腰三角形"。
2024-08-04 12:39
【總結(jié)】倍長中線(線段)造全等前言:要求證的兩條線段AC、BF不在兩個全等的三角形中,因此證AC=BF困難,考慮能否通過輔助線把AC、BF轉(zhuǎn)化到同一個三角形中,由AD是中線,常采用中線倍長法,故延長AD到G,使DG=AD,連BG,再通過全等三角形和等線段代換即可證出。1、已知:如圖,AD是△ABC的中線,BE交AC于E,交AD于F,且AE=EF,求證:AC=BF2、已知在△
2025-06-19 23:09
【總結(jié)】專業(yè)資料分享倍長中線(線段)造全等前言:要求證的兩條線段AC、BF不在兩個全等的三角形中,因此證AC=BF困難,考慮能否通過輔助線把AC、BF轉(zhuǎn)化到同一個三角形中,由AD是中線,常采用中線倍長法,故延長AD到G,使DG=AD,連BG,再通過全等三角形和等線段代換即可證出。1、已知:
2025-05-16 01:36
【總結(jié)】第一講注意添加平行線證題在同一平面內(nèi),,,若能依據(jù)證題的需要,添加恰當?shù)钠叫芯€,則能使證明順暢、簡潔.添加平行線證題,一般有如下四種情況.1為了改變角的位置大家知道,兩條平行直線被第三條直線所截,同位角相等
2025-03-25 01:21
【總結(jié)】立體幾何作輔助線的一般思路和常用方法做立體幾何題,性質(zhì)定理是打開解題思路的關(guān)鍵,也是引入輔助線的基礎(chǔ),它可告訴我們應(yīng)該如何作輔助線,其中最常用的是線面平行和面面垂直性質(zhì)定理。1、若題中給出直線a∥面α這一條件,做題時首先考慮的是:要運用線面平行的性質(zhì)定理,對照該定理中的條件就會想到應(yīng)過a作一平面β和α相交于b,則得a∥b,然后再根據(jù)其
2025-01-21 13:41
【總結(jié)】同學們好梯形的常用輔助線的研究梯形的中位線的研究平移腰作高補為三角形平移對角線其他方法轉(zhuǎn)化為三角形或平行四邊形等在梯形中常用的作輔助線方法開動腦筋靈活應(yīng)用AB
2025-01-12 14:15
【總結(jié)】與平行四邊形有關(guān)的常用輔助線作法歸類解析本文結(jié)合例題歸納六類與平行四邊形有關(guān)的常見輔助線,供同學們借鑒:第一類:連結(jié)對角線,把平行四邊形轉(zhuǎn)化成兩個全等三角形。例1如左下圖1,在平行四邊形中,點在對角線上,且,請你以為一個端點,和圖中已標明字母的某一點連成一條新線段,猜想并證明它和圖中已有的某一條線段相等(只需證明一條線段即可)⑴連結(jié)⑵
2025-06-26 21:57