【總結(jié)】1、確定圓的條件是什么?2、敘述角平線的性質(zhì)與判定性質(zhì):角平線上的點(diǎn)到這個(gè)角的兩邊的距離相等。判定:到這個(gè)角的兩邊距離相等的點(diǎn)在這個(gè)角的平分線上。3、下圖中△ABC與圓O的關(guān)系?△ABC是圓O的內(nèi)接三角形;圓O是△ABC的外接圓圓心O點(diǎn)叫△ABC的外心ACBO李明在
2024-11-07 02:32
【總結(jié)】如圖是一塊三角形木料,木工師傅要從中裁下一塊圓形用料,怎樣才能使裁下的圓的面積盡可能大呢?ABC三角形的內(nèi)切圓ABC例1作圓,使它和已知三角形的各邊都相切.(1)作圓的關(guān)鍵是什么?提出以下幾個(gè)問題進(jìn)行討論:(2)假設(shè)⊙I是所求作的圓,⊙I和三角形三邊都
2024-11-06 21:58
【總結(jié)】BCA]MNOBCAMNO三角形的內(nèi)切圓教學(xué)目標(biāo):1、通過作圖操作,經(jīng)歷三角形內(nèi)切圓的產(chǎn)生過程;2、通過作圖和探索,體驗(yàn)并理解三角形內(nèi)切圓的性質(zhì);3、類比三角形內(nèi)切圓與三角形外接圓,進(jìn)一步理解三角形內(nèi)心和外心所具有的性質(zhì);4、通過引例和例1的教學(xué),培養(yǎng)學(xué)生解決實(shí)際問題的能力和應(yīng)用數(shù)學(xué)的意識;
2024-12-04 17:18
【總結(jié)】三角形的內(nèi)切圓同步練習(xí)◆基礎(chǔ)訓(xùn)練1.如圖1,⊙O內(nèi)切于△ABC,切點(diǎn)為D,E,F(xiàn).已知∠B=50°,∠C=60°,連結(jié)OE,OF,DE,DF,那么∠EDF等于()A.40°B.55°C.65°D.70°
2024-11-15 19:40
【總結(jié)】三角形的內(nèi)切圓教學(xué)目的:1.使學(xué)生掌握三角形的內(nèi)切圓的作法.2.使學(xué)生掌握三角形內(nèi)心的定義和性質(zhì).教學(xué)的重點(diǎn)和難點(diǎn):三角形的內(nèi)切圓的作法和三角形的內(nèi)心的應(yīng)用即是重點(diǎn),又是難點(diǎn).教學(xué)過程:一、復(fù)習(xí)與提問(學(xué)生回答)角的平分線的性質(zhì)定理和判定定理二、講授新課
2024-11-18 16:03
【總結(jié)】三角形的內(nèi)切圓◆基礎(chǔ)訓(xùn)練1.如圖1,⊙O內(nèi)切于△ABC,切點(diǎn)為D,E,F(xiàn).已知∠B=50°,∠C=60°,連結(jié)OE,OF,DE,DF,那么∠EDF等于()A.40°B.55°C.65°D.70°
2024-11-28 16:35
【總結(jié)】 九年級數(shù)學(xué)《三角形的內(nèi)切圓》評課稿 本節(jié)課教學(xué)層次分明,教學(xué)過程教流暢,較好地體現(xiàn)了學(xué)生的主體性,是一節(jié)比較成功的公開課。 一、概念的引入上體現(xiàn)了解決“從何來”的問題,周老師用怎樣從一塊...
2025-04-03 12:25
2024-11-28 12:53
【總結(jié)】三角形的內(nèi)切圓如圖是一塊三角形木料,木工師傅要從中裁下一塊圓形用料,怎樣才能使裁下的圓的面積盡可能大呢?ABC三角形的內(nèi)切圓ABC和三角形各邊都相切的圓叫三角形的內(nèi)切圓三角形叫圓的外切三角形問題1:作圓的關(guān)鍵是什么?問題2:怎樣確定圓心的位置?問題
2024-11-19 06:23
【總結(jié)】確定圓的條件是什么?角平分線的定義、性質(zhì)和判定都是什么?由于不共線三點(diǎn)確定一個(gè)圓,因此每一個(gè)三角形都有且只有一個(gè)外接圓,圓心是三邊垂直平分線的交點(diǎn),叫做三角形的外心.外心到三角形三個(gè)頂點(diǎn)的距離相等。三角形的外心可能在三角形內(nèi)(銳角三角形),可能在三角形的一邊上(直角三角形的外心是斜邊的中點(diǎn)),可能在三角形外面(鈍角三角形).
2024-11-17 00:21
【總結(jié)】BCA]MNOBCAMNO三角形的內(nèi)切圓教學(xué)目標(biāo):1、通過作圖操作,經(jīng)歷三角形內(nèi)切圓的產(chǎn)生過程;2、通過作圖和探索,體驗(yàn)并理解三角形內(nèi)切圓的性質(zhì);3、類比三角形內(nèi)切圓與三角形外接圓,進(jìn)一步理解三角形內(nèi)心和外心所具有的性質(zhì);4、通過引例和例1的教學(xué),培養(yǎng)學(xué)生解決實(shí)際問題的能力和應(yīng)用數(shù)學(xué)的意
【總結(jié)】 九年級下冊《三角形的內(nèi)切圓》說課稿 一、教材分析 1、教材的地位與作用 本節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了切線的判定與性質(zhì)的基礎(chǔ)上,通過求作三角形內(nèi)最大圓的問題引出三角形的內(nèi)切圓的概念。學(xué)生通...
2025-04-03 05:12
【總結(jié)】三角形的內(nèi)切圓(一)提出問題如圖,你能否在△ABC中畫出一個(gè)圓?畫出一個(gè)最大的圓?想一想,怎樣畫?ABC例1作圓,使它和已知三角形的各邊都相切.ABCIMND(1)作圓的關(guān)鍵是什么?提出以下幾個(gè)問題進(jìn)行討論:(2)假設(shè)⊙I是所求作的圓,
2024-12-07 13:04
【總結(jié)】例:如圖為△ABC的內(nèi)切圓,點(diǎn)D,E分別為邊AB,AC上的點(diǎn),且DE為⊙I的切線,若△ABC的周長為21,BC邊的長為6,則△ADE的周長為( B ) A.15B.9C.D.7如圖,在△ABC中,AB=10,AC=6,BC=8,⊙O為△ABC的內(nèi)切圓,點(diǎn)D是斜邊AB的中點(diǎn),則tan∠ODA= 2 .如圖,O是△ABC的內(nèi)心,過點(diǎn)O作
2025-07-25 00:01
【總結(jié)】三角形的內(nèi)切圓如圖是一塊三角形木料,木工師傅要從中裁下一塊圓形用料,怎樣才能使裁下的圓的面積盡可能大呢?ABCABC和三角形各邊都相切的圓叫三角形的內(nèi)切圓三角形叫圓的外切三角形(一)引入新課問題1:作圓的關(guān)鍵是什么?問題2:怎樣確定圓心的位置?問題3:圓心