freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

正弦定理教學(xué)設(shè)計(jì)-資料下載頁(yè)

2024-11-12 12:01本頁(yè)面
  

【正文】 已知三角形的兩角和一邊,或者已知兩邊和其中一邊所對(duì)的角,都可以解出這個(gè)三角形。命題應(yīng)用講解書本上兩個(gè)例題:例1 在△ABC中,已知A=32176。,B=176。,a=。例2 在△ABC中,已知a=20cm,b=28cm,A=40176。,解三角形(角精確到10,邊長(zhǎng)精確到1cm)。例1簡(jiǎn)單,結(jié)果為唯一解??偨Y(jié):如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對(duì)邊,都可利用正弦定理來(lái)解三角形。例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。要求學(xué)生熟悉掌握已知兩邊和其中一邊的對(duì)角時(shí)解三角形的各種情形。接著回到課堂引入未解決的實(shí)際問題。在△ABC中,已知AC=1500m,∠C=450,∠B=300。求AB=?BA在已經(jīng)學(xué)習(xí)過(guò)正弦定理和例1例2的運(yùn)用之后,此題就顯得非常簡(jiǎn)單。接著,課堂練習(xí),讓學(xué)習(xí)自己運(yùn)用正弦定理解題?!鰽BC中,已知下列條件,解三角形(角度精確到10,邊長(zhǎng)精確到1cm):(1)A=45176。,C=30176。,c=10cm(2)A=60176。,B=45176。,c=20cm△ABC中,已知下列條件,解三角形(角度精確到10,邊長(zhǎng)精確到1cm):(1)a=20cm,b=11cm,B=30176。(2)c=54cm,b=39cm,C=115176。學(xué)生板演,老師巡視,及時(shí)發(fā)現(xiàn)問題,并解答。形成命題域、命題系開始我們運(yùn)用分類討論平面幾何三角形的情況證明了正弦定理。那么正弦定理的證明還有沒有其他的證法?學(xué)生可以自主思考,也可以合作探究。學(xué)生思考出來(lái)就更好,如果沒有思考出來(lái),提示兩種方法(1)幾何法,作三角形的外接圓;(2)向量法。先讓學(xué)生思考。結(jié)束后,重點(diǎn)和學(xué)生一起討論幾何法,作外接圓的證法。一方面是讓學(xué)生體會(huì)到證明方法的多樣,進(jìn)行發(fā)散性思維,但更主要的是為了得出asinA=bsinB=csinC=2R。即得正弦定理中這一比值等于外接圓半徑的2C倍的結(jié)論,讓學(xué)生能更深刻地理解到這一定理的,也方便以后的解題。而提到的向量法,則讓學(xué)生課后自己思考,可以查閱資料證明。六、課堂小結(jié)與反思這節(jié)課我們學(xué)到了什么?(正弦定理的形式?正弦定理的適應(yīng)范圍?正弦定理的證明方法?)我們從直角、銳角、鈍角三類三角形出發(fā),運(yùn)用分類的方法通過(guò)猜想、證明得到了正弦定理asinA=bsinB=csinC,它揭示了任意三角形邊和其所對(duì)的角的正弦值的關(guān)系。運(yùn)用正弦定理解決了我們所要解決的實(shí)際問題。在解三角形中,若已知兩角和一邊,或者已知兩邊和其中一邊所對(duì)的角可以用正弦定理來(lái)解決。但在第二種情況下,運(yùn)用正弦定理需要考慮多解的情況。正弦定理的證明還可以運(yùn)用向量法和作三角形的外接圓來(lái)證明。其中通過(guò)作外接圓可以得到asinA=bsinB=csinC=。七、作業(yè)布置教材第10頁(yè),A組第一題、第二題。第五篇:《》教學(xué)設(shè)計(jì)《》教學(xué)設(shè)計(jì)一、教學(xué)內(nèi)容本節(jié)課是“正弦定理”教學(xué)的第一課時(shí),其主要任務(wù)是引入并證明正弦定理,以及對(duì)正弦定理的應(yīng)用。在課型上屬于“定理教學(xué)課”。本節(jié)課是初中“解直角三角形”內(nèi)容的直接延拓,也是三角函數(shù)一般知識(shí)在三角形中的具體運(yùn)用,是解可轉(zhuǎn)化為三角形計(jì)算問題的其它數(shù)學(xué)問題及生產(chǎn)、生活實(shí)際問題的重要工具,因此具有廣泛的應(yīng)用價(jià)值。二、教學(xué)目標(biāo)知識(shí)與技能:通過(guò)對(duì)任意三角形的邊與其對(duì)角的關(guān)系的探索,掌握正弦定理的內(nèi)容及其證明方法。過(guò)程與方法:讓學(xué)生從已有的知識(shí)出發(fā),共同探究在任意三角形中,邊與其對(duì)角的關(guān)系,引導(dǎo)學(xué)生通過(guò)觀察、歸納、猜想、證明,由特殊到一般得到正弦定理等方法,體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。情感態(tài)度與價(jià)值觀:在平等的教學(xué)氛圍中,通過(guò)學(xué)生之間、師生之間的交流、合作和評(píng)價(jià),實(shí)現(xiàn)共同探究、教學(xué)相長(zhǎng)的教學(xué)情境。三、教學(xué)重點(diǎn)與難點(diǎn)重點(diǎn):正弦定理的發(fā)現(xiàn),推導(dǎo)及應(yīng)用 難點(diǎn):正弦定理的推導(dǎo)及應(yīng)用四、教學(xué)過(guò)程設(shè)計(jì)(一)課前導(dǎo)入教師:(1)在△ABC中,∠A,∠B,∠C分別為,對(duì)應(yīng)的邊長(zhǎng)a:b:c為1:1:1,對(duì)應(yīng)角的正弦值分別為,引導(dǎo)學(xué)生考察,的關(guān)系。(學(xué)生回答它們相等)(2)、在△ABC中,∠A,∠B,∠C分別為,對(duì)應(yīng)的邊長(zhǎng)a:b:c為1:1:,對(duì)應(yīng)角的正弦值分別為,1;(學(xué)生回答它們相等),對(duì)應(yīng)的邊長(zhǎng)a:b:(3)、在△ABC中,∠A,∠B,∠C分別為c為1:3):2,對(duì)應(yīng)角的正弦值分別為,1。(學(xué)生回答它們相等)(圖教師:那么任意三角形是否有呢?結(jié)論:對(duì)于任意三角形都成立。(二)證明猜想,得出定理教師:對(duì)任意的三角形,如何用數(shù)學(xué)的思想方法證明呢?前面探索過(guò)程對(duì)我們有沒有啟發(fā)?學(xué)生分組討論,每組派一個(gè)代表總結(jié)并證明。學(xué)生:思考得出(1)對(duì)于呢?學(xué)生:思考交流得出,如圖4,在RtABC中,設(shè)BC=a,AC=b,AB=c,則有,又,則從而在直角三角形ABC中,(2)在銳角三角形中,如圖2設(shè)BC=a,CA=b,AB=c作:,垂足為D在中,在中,同理,在中,(3)在鈍角三角形中,如圖6設(shè)BC的延長(zhǎng)線于D為鈍角,BC=a,CA=b,AB=c,作交在中,在中,同銳角三角形證明可知:教師:我們把這條性質(zhì)稱為正弦定理:在一個(gè)三角形中,各邊和它所對(duì)角的正弦的比相等,即(三)了解解三角形概念一般地,把三角形的三個(gè)角A、B、C和它們的對(duì)邊a、b、c叫做三角形的元素,已知,三角形的幾個(gè)元素,求其他元素的過(guò)程叫做解三角形。(四)運(yùn)用定理,解決例題討論正弦定理可以解決的問題類型:教師:引導(dǎo)學(xué)生從分析方程思想分析正弦定理可以解決的問題。(1)如果已知三角形的任意兩個(gè)角與一邊,求三角形的另一角和另兩邊,如;(2)如果已知三角形任意兩邊與其中一邊的對(duì)角,求另一邊與另兩角,如。例題的處理,先讓學(xué)生思考答題,讓學(xué)生思考主要是突出主體,學(xué)生答題是讓學(xué)生書寫解題步驟,如果有不正確不規(guī)范的地方,由教師更正并規(guī)范解題步驟。例1:在中,已知,解三角形。分析“已知三角形中兩角及一邊,求其他元素”,第一步可由三角形內(nèi)角和為求出第三個(gè)角∠C,再由正弦定理求其他兩邊。例2:在中,已知,解三角形。分析“已知三角形任意兩邊與其中一邊的對(duì)角,求其他元素” 學(xué)生:反饋練習(xí): 讓學(xué)生自己解決問題,提高學(xué)生學(xué)習(xí)的熱情和動(dòng)力,使學(xué)生體驗(yàn)到成功的愉悅感,變“要我學(xué)”為“我要學(xué)”,“我要研究”的主動(dòng)學(xué)習(xí)。(五)課堂小結(jié):讓學(xué)生嘗試小結(jié),談?wù)勍ㄟ^(guò)這節(jié)課的學(xué)習(xí)自己有哪些收獲。小結(jié)主要體現(xiàn):(1)正弦定理的內(nèi)容及其證明思想方法。(2)正弦定理的應(yīng)用范圍:①已知三角形中兩角及一邊,求其他元素;②已知三角形中兩邊和其中一邊所對(duì)的角,求其他元素。(3)分類討論的數(shù)學(xué)思想。(六)作業(yè)布置作業(yè):第21頁(yè)[]第1題(3)(4),2。五、教學(xué)反思本節(jié)課通過(guò)對(duì)《正弦定理》的學(xué)習(xí),讓學(xué)生先猜想定理并且證明定理,通過(guò)對(duì)定理的探究,能使學(xué)生體驗(yàn)到數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程,進(jìn)而培養(yǎng)學(xué)生提出問題、解決問題等研究性學(xué)習(xí)的能力。本節(jié)課的重點(diǎn)是讓學(xué)生學(xué)會(huì)應(yīng)用正弦定理解決解三角形的相關(guān)問題。在教學(xué)過(guò)程中,實(shí)行自主課堂的教學(xué)模式,體現(xiàn)學(xué)生是課堂的主體,讓學(xué)生多思考,多回答,多練習(xí)。在課堂上教師要運(yùn)用恰當(dāng)?shù)姆椒ㄈヒ龑?dǎo)學(xué)生思考和學(xué)習(xí),在講解時(shí)要簡(jiǎn)潔明了,通俗易懂。在和學(xué)生互動(dòng)時(shí)要多鼓勵(lì)學(xué)生,讓學(xué)生來(lái)嘗試回答問題和作練習(xí),如果有學(xué)生回答不準(zhǔn)確不詳細(xì),可以讓其他學(xué)生補(bǔ)充,最后由老師更正歸納。我在這次自主課堂的教學(xué)中,有很多不足之處需要改進(jìn),比如對(duì)學(xué)生進(jìn)行小組劃分,分工不夠細(xì)致,在分工時(shí)要考慮學(xué)生的層次,讓學(xué)生通過(guò)自己的思考對(duì)新知識(shí)的學(xué)習(xí)和掌握,使每位學(xué)生在課堂上都能夠體現(xiàn)自我價(jià)值。
點(diǎn)擊復(fù)制文檔內(nèi)容
醫(yī)療健康相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1