freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

必修⑤111正弦定理教案-資料下載頁

2024-11-09 05:04本頁面
  

【正文】 次回顧該同學(xué)具體的做法)教師:能否像求AC的方法一樣對BC進行求解呢? 學(xué)生:可以教師:那么具體應(yīng)該怎么做呢?學(xué)生:過點B向AC作高,垂直記作E,如圖:接下來,只需要將相關(guān)的數(shù)據(jù)代入即可求出BC的長度 教師:總結(jié)學(xué)生的做法通過作兩條高線后,即可把AC、BC的長度用已知的邊和角表示出來接下來,只需要將題目中的相關(guān)數(shù)據(jù)代入,本題便迎刃而解。定理的發(fā)現(xiàn):oo教師:如果把本題目中的有關(guān)數(shù)據(jù)變一下,其中A=50,B=80大家又該怎么做呢?學(xué)生1:同樣的做法(仍得作高)學(xué)生2:只需將已知數(shù)據(jù)代入上述等式即可求出兩邊的長度 教師:還需要再次作高嗎? 學(xué)生:不用教師:對于任意的銳角三角形中的“已知兩角及其夾邊,求其他兩邊的長”的問題是否都可以用上述兩個等式進行解決呢? 學(xué)生:可以教師:既然這兩個等式適合于任意的銳角三角形,那么我們只需要記住這兩個等式,以后若是再遇見銳角三角形中的這種問題,直接應(yīng)用這兩個等式 并進行代入求值即可。教師:大家看看,這兩個等式的形式是否容易記憶呢? 學(xué)生:不容易教師:能否美化這個形式呢?學(xué)生:美化之后可以得到:(定理)教師:銳角三角形中的這個結(jié)論,到底表達的是什么意思呢? 學(xué)生:在銳角三角形中,各邊與它所對角的正弦的比相等教師:那么銳角三角形中的這個等式能否推廣到任意三角形中呢?那么接下來就讓我們分別來驗證一下,看看這個等式在直角三角形和鈍角三角形中是否 成立。定理的探索:教師:大家知道,在直角三角形ABC中:若 則:所以:故:即: 在直角三角形中也成立教師:那么這個等式在鈍角三角形中是否成立,我們又該如何驗證呢?請大家思考。學(xué)生活動二:驗證教師(提示):要出現(xiàn)sinA、sinB的值必須把A、B放在直角三角形中即就是要作高(可利用誘導(dǎo)公式將在鈍角三角形中是否成立轉(zhuǎn)化為)學(xué)生:學(xué)生可分小組進行完成,最終可由各小組組長匯報本小組的思路和做法。(結(jié)論成立)教師:我們在銳角三角形中發(fā)現(xiàn)有這樣一個等式成立,接下來,用類比的方法對它分別在直角三角形和鈍角三角形中進行驗證,結(jié)果發(fā)現(xiàn),這個等式對于任意的直角三角形和任意的鈍角三角形都成立,那么我們此時能否說:“這個等式對于任意的三角形都成立”呢? 學(xué)生:可以教師:這就是我們這節(jié)課要學(xué)習(xí)的《正弦定理》(引出課題)定理的證明教師:展示正弦定理的證明過程證明:(1)當(dāng)三角形是銳角三角形時,過點A作BC邊上的高線,垂直記作D,過點B向AC作高,垂直記作E,如圖:同理可得:所以易得(2)當(dāng)三角形是直角三角形時;在直角三角形ABC中:若 因為:所以:故:即:(3)當(dāng)三角形是鈍角三角形時(角C為鈍角)過點A作BC邊上的高線,垂直記作D由三角形ABC的面積可得 即:故:所以,對于任意的三角形都有教師:這就是本節(jié)課我們學(xué)習(xí)的正弦定理(給出定理的內(nèi)容)(解釋定理的結(jié)構(gòu)特征)思考:正弦定理可以解決哪類問題呢? 學(xué)生:在一個等式中可以做到“知三求一” 定理的應(yīng)用教師:接下來,讓我們來看看定理的應(yīng)用(回到剛開始的那個實際問題,用正弦定理解決)(板書步驟)成立。隨堂訓(xùn)練學(xué)生:獨立完成后匯報結(jié)果或快速搶答教師:上述幾道題目只是初步的展現(xiàn)了正弦定理的應(yīng)用,其實正弦定理的應(yīng)用相當(dāng)廣泛,那么它到底可以解決什么問題呢,這里我送大家四句話:“近測高塔遠(yuǎn)看山,量天度海只等閑;古有九章勾股法,今看三角正余弦.”以這四句話把正弦定理的廣泛應(yīng)用推向高潮)課堂小結(jié):知識方面:正弦定理:其他方面:過程與方法:發(fā)現(xiàn)推廣猜想驗證證明(這是一種常用的科學(xué)研究問題的思路與方法,希望同學(xué)們在今后的學(xué)習(xí)中一定要注意這樣的一個過程)數(shù)學(xué)思想:轉(zhuǎn)化與化歸、分類討論、從特殊到一般作業(yè)布置: ①書面作業(yè):P52②查找并閱讀“正弦定理”的其他證明方法(比如“面積法”、“向量法”等)③思考、探究:若將隨堂訓(xùn)練中的已知條件改為以下幾種情況,結(jié)果如何?板書設(shè)計:定理:探索:證明:應(yīng)用:檢測評估:
點擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1