【總結】正弦定理A組基礎鞏固1.在△ABC中,已知b=40,c=20,C=60°,則此三角形的解的情況是()A.有一解B.有兩解C.無解D.有解但解的個數(shù)不確定解析:由正弦定理bsinB=csinC,得sinB=bsinCc=40×3220=31.∴
2024-12-08 20:25
【總結】「自我檢測」檢測1.說出下列函數(shù)的奇偶性:y=x30y(1)x1-11-10y(2)x-111y=丨x丨y0(3)x21-1-1xy1?0y(4)xy=0檢測2.函數(shù)y=f(x
2025-03-12 14:39
【總結】研讀教材P11-P13:1.了解投影及其相關概念;2.投影的分類;3.研讀P12圖:如何得幾何體投影?研讀教材P12-P13:1.如何繪制幾何體的三視圖?三視圖間有哪些聯(lián)系?2.繪出圖–5圓柱和圓錐的三視圖,請你總結一下幾何體的三視圖研究方法?3.思考圖
【總結】研讀教材P16:1.學習教材例1“用斜二測畫法畫水平放置的正六邊形的直觀圖。”FEADBC2.請通過學習歸納斜二測畫法畫平面圖形的直觀圖的基本步驟及其特點3.利用斜二測畫法畫水平放置的正三角形與圓的直觀圖ABCO4.如圖,△A’B’C’是水平放置的平面圖形的直觀圖,請
【總結】正弦定理正弦定理回憶一下直角三角形的邊角關系?ABCcba222cba??Acasin?Bcbsin?Abatan????90BA兩等式間有聯(lián)系嗎?cBbAa??sinsin1sin?CCcBbAasinsinsin??即正弦定理,定理對任意
2025-11-08 11:59
【總結】知識回顧1.比較兩數(shù)大小的方法;2.不等式的基本性質?;仡櫨毩暋?,求證:最大,均為正數(shù),且,,,:設 練習cbdadcbaadcba????1練習2:某市環(huán)保局為增加城市的綠地面積,提出兩個投資方案:方案A為一次性投資500萬元;方案B為第一年投資5萬元,以后每年都比前一年增加
2025-03-12 14:54
【總結】問題探究大。數(shù)比左邊的點表示的數(shù),右邊的點表示的與表示兩個不同的實數(shù)分別與點:在數(shù)軸上不同的點 探究baBA1BAbaxAax(B)(b)ABabx從數(shù)軸上兩點的位置(如圖3-1-1)可以看出a,b之間具有哪些性質。探究2:任意給出兩個實數(shù)a,b你能想到哪些比大
【總結】正弦定理和余弦定理沈陽二中數(shù)學組高中數(shù)學⑤B版正弦定理第一節(jié)思考:在直角三角形中,“邊”與“角”的關系Rt中ABC?222abc??sin,sinacAbcB??sinsinabAB?sin1C?sinsinsinabc
【總結】知識回顧1.解析幾何的一般方法;2.平面幾何中圓的定義,確定圓的要素。問題探究?)的估計內還是軌跡外在(,)請問點()的軌跡上?是否在(,)請問點(滿足什么方程?,中的,點的軌跡是什么?動,請問動點到原點的距離高于,中,動點)已知平面直角坐標系:(探究1)21(31)21(2)(5)(11MMyxyxPP
2025-03-12 14:58
【總結】正弦定理(1)【學習目標】1.通過對直角三角形邊角間數(shù)量關系的研究,發(fā)現(xiàn)正弦定理.2.能夠利用向量方法證明正弦定理,并運用正弦定理解決兩類解三角形的簡單問題.【重點難點】1.重點:正弦定理的發(fā)現(xiàn),證明及其簡單應用.2.難點:正弦定理的應用.【學習過程】一、自主學習:任務1:在直角三角形中三角形的邊與
【總結】正弦定理(2)【學習目標】.,判斷三角形時解的個數(shù)..【重點難點】重點:正弦定理的應用.難點:正弦定理的應用.【學習過程】一、自主學習:任務1:正弦定理:_______________________.任務2:正弦定理的變形公式:_____________________
2024-12-09 03:49
【總結】1.數(shù)列問題研究的一般方法。知識回顧:(1)根據(jù)下列圖形及相應點數(shù),完成圖形和點數(shù)的填空,并寫出點數(shù)構成數(shù)列{an}的一個通項公式:①——,…()an=___②——,…()an=___??項。第是),則數(shù)列中最大的項,(的通項公式)若數(shù)列 (___*Nnn
2025-03-12 14:51
【總結】問題探究探究1:請找出下列一組圖中方塊個數(shù)的規(guī)律,完成填空:由上可知,第6堆有____個方塊;若記第n堆的方塊數(shù)為an,則=an________。第1堆第2堆第4堆第3堆探究2:請找出下列一組圖中方塊個數(shù)的規(guī)律,完成填空:由上可知,第6堆有____個方塊;若記第n堆
2025-03-12 21:14
【總結】教材研讀A.研讀教材P82-P83:1.教材在平面直角坐標系中提供了幾種確定直線位置的方法?2.直線的傾斜角α是如何定義的?3.直線的斜率k是如何定義的?是否每條直線都有斜率?通過這一問題的分析,教材提醒我們今后研究直線的斜率應注意哪些問題?4.初中階段,我們可以用函數(shù)解析式
【總結】簡單線性規(guī)劃問題的應用(2)知識回顧研究線性規(guī)劃的一般方法典例精析.11,02200.1的取值范圍求滿足不等式組、實數(shù)例??????????????xyzyxyxyyx.______.)1,3()0(,2241,.2