【總結】子集觀察下面三個集合,找出它們之間的聯系:A={1,2,3}C={1,2,3,4,5}B={1,2,7}觀察A、C知,集合A中任一個元素都是集合C的元素,那么我們就說,A包含于C或C包含A.A={1,2,3}C={1,2,3,4,5}我們就說,A包含于C或
2025-03-12 14:29
【總結】研讀教材P5-P6:基本旋轉體的結構特征1.類比多面體:棱柱、棱錐、棱臺的研究方法(1)圓柱、圓錐、圓臺與球的圓形及結構特征;(2)圓柱、圓錐、圓臺與球的表示法;(3)圓柱、圓錐、圓臺與球的性質;2.柱體、椎體與臺體的分類:3.柱體、椎體與臺體間的相互聯系:檢測1:教材P9T1(4);檢測2:教
【總結】知識回顧1.圓的標準方程;2.圓的一般方程;3.點、直線、圓與圓的位置關系。問題探究所對對邊的一半。一邊的距離等于這條邊互相垂直,求證圓心到形的對角線:已知內接于圓的四邊 探究1BACDOO’。,求證:相交于點、,, 上,且,在邊分別、中,點:等邊 自我檢測CPAPPBEADCACEB
2025-03-12 14:59
【總結】問題探究探究1:已知平面上兩點P1(-1,2),P2(2,)求P1,P2的距離|P1P2|?7探究2:已知平面上兩點P1(x1,y1),P2(x2,y2),如何求P1,P2的距離|P1P2|?探究3:通過上訴探究,請問研究兩點距離你有幾種常用的分析策略?探究4:通已知A(-1,2),
2025-03-12 14:58
【總結】教材研讀研讀教材P134-P1351.空間直角坐標系及其相關概念;2.如何在空間直角坐標系中確定點的位置?3.教材P135例1、例2起到了哪些作用?4.上訴兩例題在研究空間坐標系中點的位置時有哪些不足?你如何改進?的坐標;,求交于與)若 ?。ǖ淖鴺?;)求點 ?。ò胼S上。軸的正軸,分別在,為坐標原點,頂點
【總結】知識回顧1.兩點間的距離公式;2.解析幾何問題的一般研究方法。問題探究A:已知P0(x0,y0),求點P0到下列直線的距離:(1)到x軸的距離是________;(2)到y軸的距離是________;(3)到直線x=a的距離是________;(4)到直線
【總結】知識回顧1.直線的傾斜角的定義;2.直線的斜率公式;3.若兩直線l1:k1x+b1,l2:y=k2x+b2;則l1//l2,l1⊥l2及l(fā)1與l2重合的條件是什么?4.解析幾何中涉及直線的斜率應注意什么問題?問題探究探究1:(1)如圖,直徑l經過點P0(x0,y0),
2025-03-12 14:54
【總結】自我感悟1.冪函數定義2.冪函數的性質如何研究.________xfxf的解析式為則,的圖象經過點冪函數 )()22()(.1知識運用。,奇偶性是是,值域的定義域是函數 ____________________xy32.2?數的解析式。函的增大而減
2025-03-12 14:53
【總結】棱柱、棱錐和棱臺的結構特征(二)三.棱錐及相關概念1.定義:有一個面是多邊形,而其余各面都是有一個公共頂點的三角形,由這些面圍成的幾何體叫做棱錐,如下圖所示。棱錐的側面棱錐的頂點棱錐的側棱棱錐的高SABCDEO2.相關概念:(1)棱錐中有公共頂點的各三角形叫做棱錐
2024-11-17 17:34
【總結】研讀教材P23思考部分1.球的體積與表面積公式;2.完成P27例4的證明,體會公式的運用;“圓柱的底面直徑與高都等于球的直徑,求證:(1)球的體積等于圓柱體積的;(2)球的表面積等于圓柱的側面積?!?23.自我檢測:P28練習T1,T2。比值為的與,則線段的表面積的比值為面積與球的⊙的小圓
2025-03-12 14:39
【總結】知識回顧直線的不同方程及適用范圍問題探究探究1:求下列直線的斜率以及與y軸的截距:-=--=--yxxy1451yx13312113(1)1=2(3);(2)。()探究2:(1)平面直角坐標系中的每一條直線都可以用一個關于x,y的二
【總結】知識回顧1.圓的標準方程;2.點與圓的位置關系及其判斷。問題探究跡。的軌跡方程并判斷其軌,求點的距離之比為,,,與兩個定點:已知點 探究MAOM21)03()00(1圖形?表示什么)方程( 表示什么圖形?)方程:( 探究064220142122222??????????
【總結】知識回顧1.點P0(x0,y0)到直線l:Ax+By+C=0的距離公式;2.已知l1:y=k1x+b1,l2:y=k2x+b2,判斷l(xiāng)1與l2的位置關系;3.已知l1:A1x+B1y+C1=0,l2:A2x+B2y+C2
【總結】知識回顧1.直線的點斜式、斜截式方程及其適用范圍;2.若直線l1:y=k1x+b1,l2:y=k2x+b2;則l1//l2,l1⊥l2及l(fā)1與l2重合、相交的條件是什么?問題探究探究1:若直線l與x軸的截距為3,與y軸的截距為-4,求直線l的方
【總結】知識回顧1.直線的五種方程形式及適用范圍;2.直線的位置關系及其滿足的條件?;仡櫨毩暸袛嘞铝懈鲗χ本€的位置關系,如果相交,求出交點的坐標。(1)l1:x-y=0,l2:3x+3y-10=0;(2)l1:3x-y+4=0,l2:6x-2y-1=0;(3)l1:3x+4y-5=0,l2:6x+8