freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

914完全平方公式[推薦]-資料下載頁

2024-11-04 13:55本頁面
  

【正文】 、完全平方公式的推導。完全平方公式的應用。教學難點:消除學生頭腦中的前概念,避免形成“相異構想”。完全平方公式結構的認知及正確應用.四、教學設計分析本節(jié)課設計了十一個教學環(huán)節(jié):學生練習、暴露問題——驗證——推廣到一般情況,形成公式——數(shù)形結合——進一步拓廣——總結口訣——公式應用——學生反饋——學生PK——學生反思——鞏固練習.第一環(huán)節(jié):學生練習、暴露問題活動內(nèi)容:計算:(a+2)2設想學生的做法有以下幾種可能:①(a+2)2=a2+22②(a+2)2=a2+2a+22③正確做法。針對這幾種結果都將a=1代入計算,得出①②都是錯誤的,但③的做法是否一定正確呢?怎么驗證?活動目的:在很多學生的頭腦中,認為兩數(shù)和的完全平方與兩數(shù)的平方和等同,即:(a+2)2=a2+22,如果不將這種定式思維_就很難建立起一個正確的概念。這一環(huán)節(jié)的目的就是讓學生的這種錯誤或其它錯誤充分暴露出來,并讓學生充分認識到自己原有的定式思維是錯誤的,為下一步構建新的思維模式埋下伏筆.第二環(huán)節(jié):驗證(a+2)2=a2–4a+22活動內(nèi)容:(a+2)2=(a+2)?(a+2)=a2+2a+2a+22活動目的:在前一環(huán)節(jié)已經(jīng)打破了學生的原有的思維定式的基礎上,給學生建立正確的思維方法,避免形成“相異構想”.第三環(huán)節(jié):推廣到一般情況,形成公式活動內(nèi)容:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2活動目的:讓學生經(jīng)歷從特殊到一般的探究過程,體驗到發(fā)現(xiàn)的快樂.第四環(huán)節(jié):數(shù)形結合活動內(nèi)容:設問:在多項式的乘法中,很多公式都都可以用幾何圖形進行解釋,那么完全平方公式怎樣用幾何圖形解釋呢?展示動畫,用幾何圖形詮釋完全平方公式的幾何意義.學生思考:還有沒有其它的方法來詮釋完全平方公式?(課后思考)活動目的:讓學生進一步認識到數(shù)與形都不是孤立存在的,數(shù)與形是可以有機地結合在一起,從而發(fā)展學生的數(shù)形結合的數(shù)學思想.第五環(huán)節(jié):進一步拓廣活動內(nèi)容:推導兩數(shù)差的完全平方公式:(a–b)2=a2–2ab+b2方法1:(a–b)2=(a–b)(a–b)=a2–ab–ab+b2=a2–2ab+b2方法2:(a–b)2=[a+(–b)]2=a2+2a(–b)+(–b)2=a2–2ab+b2活動目的:讓學生經(jīng)歷由兩數(shù)和的完全平方公式拓廣到兩數(shù)差的完全平方公式的過程,體會到符號差異帶來的結果差異,由第二種推導方法體會到兩數(shù)差的完全平方公式是兩數(shù)和的完全平方公式的應用.第六環(huán)節(jié):總結口訣、認識特征活動內(nèi)容:比較兩個公式的共同點與不同點:(a+b)2=a2+2ab+b2(a–b)2=a2–2ab+b2特征:①左邊都是一個二項式的完全平方,兩者僅有一個符號不同。右邊都是二次三項式,其中第一、三項是公式左邊二項式中每一項的平方,中間一項是左邊二項式中兩項乘積的兩倍,兩者也僅一個符號不同。②公式中的a、b可以是任意一個代數(shù)式(數(shù)、字母、單項式、多項式)口訣:首平方,尾平方,首尾相乘的兩倍在中央.活動目的:認識完全平方公式的特征,總結出完全平方公式的口訣,便于學生理解與記憶,避免學生在應用該公式中出現(xiàn)錯誤.第七環(huán)節(jié):公式應用活動內(nèi)容:例:計算:①(2x–3)2。②(4x+)2解:①(2x–3)2=(2x)2–2?(2x)?3+32=4x2–12x+9②(4x+)2=(4x)2+2?????(4x)+()2=16x2+2xy+活動目的:在前幾個環(huán)節(jié)中,學生對完全平方公式已經(jīng)有了感性認識,通過本環(huán)節(jié)的講解以及下一環(huán)節(jié)的練習,使學生逐步經(jīng)歷認識——模仿——.第八環(huán)節(jié):隨堂練習活動內(nèi)容:計算:①。②。③(n+1)2–n2活動目的:通過學生的反饋練習,使教師能全面了解學生對完全平方公式的理解是否到位,完全平方公式的應用是否得當,以便教師能及時地進行查缺補漏.第九環(huán)節(jié):學生PK活動內(nèi)容:每個學生各出五道完全平方公式的計算題給自己的同桌解答,比一比誰的準確性率高,速度快.活動目的:活躍課堂氣氛,激起學生的好勝心,進一步鞏固學生對完全平方公式的理解與應用.第十環(huán)節(jié):學生反思活動內(nèi)容:通過今天這堂課的學習,你有哪些收獲?收獲1:認識了完全平方公式,并能簡單應用。收獲2:了解了兩數(shù)和與兩數(shù)差的完全平方公式之間的差異。收獲3:感受到數(shù)形結合的數(shù)學思想在數(shù)學中的作用.活動目的:通過對一堂課的歸納與總結,鞏固學生對完全平方公式的認識,體會數(shù)學思想的精妙.第十一環(huán)節(jié):布置作業(yè):完全平方公式教案15教學目標使學生理解完全平方公式的意義,弄清完全平方公式的形式和特點。使學生知道把完全平方公式反過來就可以得到相應的因式分解。掌握運用完全平方公式分解因式的方法,能正確運用完全平方公式把多項式分解因式(直接用公式不超過兩次)教學方法:對比發(fā)現(xiàn)法課型新授課教具投影儀教師活動:學生活動復習鞏固:上節(jié)課我們學習了運用平方差公式分解因式,請同學們先閱讀課本87—88頁,看看你能有什么發(fā)現(xiàn)?新課講解:(投影)我們把形如a2+2ab+b2與a22ab+b2叫做完全平方式,和平方差公式一樣,我們也可以利用它把一些多項式因式分解。例如:a2+8a+16=a2+24a+42=(a+4)2a28a+16=a224a+42=(a4)2(要強調(diào)注意符號)首先我們來試一試:(投影:牛刀小試):(1)x2+8x+16。(2)25a4+10a2+1(3)(m+n)24(m+n)+4(教師強調(diào)步驟的重要性,注意發(fā)現(xiàn)學生易錯點,及時糾正)+16y4分解因式(本題用了兩次乘法公式,難度稍大,教師要鼓勵學生大膽嘗試,敢于創(chuàng)新)將乘法公式反過來就得到多項式因式分解的公式。運用這些公式把一個多項式分解因式的方法叫做運用公式法。練習:第88頁練一練第2題第四篇:完全平方公式教案學習周報專業(yè)輔導學生學習完全平方公式在代數(shù)、幾何中的兩點運用,在一些代數(shù)、幾何問題中,還會利用其進行解題,在公式的一些使用過程中,還結合了整體思考的數(shù)學思想,、例1 已知a2+b2=1,ab=分析:要求(a+b)4,直接求12,求(a+b),的值有一定的困難,因而可利用整體思想,設法求出(a+b)2,結合題目條件a2+b2=1,:把ab=a2ab+b2212=兩邊同時平方,得34又因為a2+b2=1,所以2ab=a+2ab+b4222=1+491634 即(a+b)=74所以(a+b)=.22例3 已知x3x+1=0,求(1)x+1x2;(2)x+:觀察所求代數(shù)式的特征,x+21x2可由x++1=0求出代數(shù)式x+,:把x3x+1=0兩邊同時除以x,得x3+1x=0,即x+1x=+21x=3兩邊同時平方,得 1x+1x2x+2x=9,即 x+21x2=7學習周報專業(yè)輔導學生學習再把x2+421x2=7兩邊同時平方,得 1x2x+2x+1x21x4=49,即x+441x144=47.=(1)x2+(2)x+=7;x二、利用完全平方式判斷三角形形狀例4 已知三角形的三邊a,b,c滿足a2+b2+c2abacbc=0,:判斷形狀的三角形一般都是特殊三角形,因而可把目標定為證明邊相等,聯(lián)想到完全平方式的非負性,:由a2+b2+c2abacbc=0兩邊同時乘以2,整理可得(a22ab+b22)+(a22ac+c22)+(b22bc+c2)=0所以(ab)+(ac)+(bc)=02因為(ab)≥0,(ac)≥0,(bc)≥0 222所以(ab)=0,(ac)=0,(bc)=0 222所以a=b,a=c,b=c 即 a=b= 已知a,b,c是DABC的三邊長,且a+2b+c2b(a+c)=0,:與例4相類似,也是利用完全平方公式將條件進行變形,:由a+2b+c2b(a+c)=0變形,得 222(a22ab+b22)+(b22bc+c2)=02所以(ab)+(bc)=0因為(ab)≥0,(bc)≥0 學習周報專業(yè)輔導學生學習所以(ab)=0,(bc)=0 22所以a=b,b=c 即 a=b=c 第五篇:完全平方公式 教學設計 完全平方公式 教學設計20212022學年人教版八年級數(shù)學上冊【課標內(nèi)容】通過本課的學習不斷啟迪學生思考,發(fā)展學生的思維能力,讓學生經(jīng)歷探索新知、鞏固新知和拓展新知這一過程,發(fā)揮學生的主體作用,增強學生學數(shù)學、讓學生在公式的運用中積累解題的經(jīng)驗,體會成功的喜悅.【教材分析】本節(jié)課的教學內(nèi)容是完全平方公式,既是多項式乘法的延伸,又是一種特殊形式的多項式的乘法,它在后繼學習中如:公式法分解因式、配方法等具有支撐作用,是一種被廣泛應用的公式,教材通過創(chuàng)設“計算實驗田面積”的問題,引導學生利用不同的計算方法得出完全平方公式,同時也給出了完全平方公式的幾何背景,通過設計“想一想”,對得出的公式利用已經(jīng)學過的多項式乘法法則進行驗證,進而得出(ab)2=a22ab+b2,然后將(a+b)2=a2+2ab+b2與(ab)2=a22ab+b2統(tǒng)稱為“完全平方公式”.通過設計例題和隨堂練習實現(xiàn)學生能運用公式進行簡單計算的目的,通過設計“讀一讀”介紹“楊輝三角”使學生了解我國古代數(shù)學的輝煌成就,并引導學生發(fā)現(xiàn)新的規(guī)律,為學生產(chǎn)生思維的飛躍提供了平臺.【學情分析】學生已熟練掌握了冪的運算和整式乘法,但在進行多項式乘法運算時常常會確定錯某些項符號及漏項等問題.學生學習完全公式的困難在于對公式的結構特征以及公式中字母的廣泛含義學生的理解.因此,教學中引導學生分析公式的結構特征,并運用變式訓練揭示公式的本質(zhì)特征,以加深學生對公式的理解.【教學目標】:學生通過推導完全平方公式,了解公式的幾何背景;理解并掌握公式的結構特征,并能進行簡單計算;:學生在探索完全平方公式的過程中,體會數(shù)形結合,進一步發(fā)展符號感和推理能力;:通過聯(lián)系生活實際的學習,體會到公式的應用價值,在獨立思考的基礎上,積極參與對數(shù)學問題的討論,敢于發(fā)表自己的觀點,形成良好的學習態(tài)度.【教學重點】完全平方公式的結構特征及公式直接應用.【教學難點】對公式中字母a、b的廣泛含義的理解與正確應用.【教學方法】五步教學法 引導發(fā)現(xiàn)法、類比法、啟發(fā)探究 講練結合【課前準備】學案 多媒體課件【課時設置】一課時【教學過程】數(shù)學教學過程是教師引導學生進行學習活動的過程,是教師和學生間互動的過程,為有序、有效地進行教學,切實突出學生主體地位,:一、預學自檢 互助點撥(閱讀課本P 109~ 110頁,思考下列問題),能發(fā)現(xiàn)什么規(guī)律?(1)(p+1)2=(p+1)(p+1)=___________ (2)(m+2)2=________(3)(p-1)2=(p-1)(p-1)=___________(4)(m-2)2=______________ 再計算: 2.歸納公式:文字敘述: 文字敘述: 公式中的a、b可以代表 3.思考:看課本P109思考圖::老師引導學生觀察、分析、發(fā)現(xiàn)和提出問題,讓學生用自己的方法探究完全平方公式的結構特征,教師引導學生討論,并對照“平方差公式”的特征和形式.【設計意圖】 讓學生親自觀察、探究、得出結論,激發(fā)興趣加深對公式的理解和掌握通過引導學生自主合作、探究、驗證,培養(yǎng)學生分析問題、幫助學生熟練掌握應用完全平方公式進行因式分解,、合作互學 探究新知(1)(2)(3)(4)思考:相等嗎?相等嗎?學生以小組為單位進行探索交流,教師可參與到學生的討論中,對遇到困難的同學及時予以啟發(fā)和幫助,教師引導,組織練習,巡回輔導,重點問題進行強化、點撥方法、總結規(guī)律,、自我檢測 成果展示(1)(2)(3) (4)判斷題(1)()(2)()(3)()(4)選擇題 是一個完全平方式,那么m的值是()A.4 B.4 C. D.通過計算和交流,使學生能夠正確運用“兩數(shù)和的完全平方公式”進行計算四、應用提升 ,則值是【設計意圖】 設置階梯式練習,符合學生身心發(fā)展的規(guī)律,培養(yǎng)學生勤于思考、善于動腦的良好學習習慣,并讓學生感受新舊知識之間的緊密聯(lián)系五、經(jīng)驗總結 反思收獲本節(jié)課你學到了什么?寫出來 173。173。(1)分解因式前注意是否符合公式的形式和特點;(2)平方項前面是負數(shù)時,先把負號提到括號前面;(3)多項式中有公因式應先提公因式,再進一步分解;(4)完全平方公式中的a和b是多項式時,:點評,.【設計意圖】 梳理知識結構形成知識體系.【板書設計】完全平方公式(a+b)2=a2+2ab+b2,(ab)2 = a22ab +b2.【備課反思】,了解公式的幾何背景,了解公式的幾何背景,、化歸、對稱、數(shù)形結合、培養(yǎng)學生的發(fā)現(xiàn)能力、求簡意識、應用意識、勇于探索的精神和善于觀察,理解公式的本質(zhì),并會運用公式進行簡單的計算,理解公式中的字母含義,在整個教學活動中也存在著一些不足的地方,從時間安排來看,推導公式時時間用得稍微多了點,以致于后面覺得時間緊,學生活動少,雖然該講的地方已講完,但收尾太草率,所以在今后的教學中應把會發(fā)生的各種問題考慮周全,留一定的時間進行糾錯或進行教學反饋或加強師生互動,使新課程的改革從我做起,從我們大家一起做起,為教育事業(yè)的發(fā)展貢獻自己的力量.
點擊復制文檔內(nèi)容
環(huán)評公示相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1