【導(dǎo)讀】1.已知C0n+2C1n+22C2n+…+2nCnn=729,則C1n+C3n+C5n的值等于(). 4.若(1+a)+(1+a)2+(1+a)3+…+bn=30,則自然數(shù)n的值為。7.2(1-x)5=a0+a1x+a2x2+…+a7x7,則a1-a2+a3-a4+a5-a6+a7等于(). 3xn的展開式的前三項(xiàng)系數(shù)的和為129,試問這個(gè)展開式中是否有常數(shù)項(xiàng)?如果沒有,請(qǐng)說明理由;如果有,求出這一項(xiàng).。12+2xn的展開式中,13.若等差數(shù)列{an}的首項(xiàng)為a1=C11-2m5m-A2m-211-3m,公差是??????52x-253x2n展開式中的。=C0n+18n+1+C1n+18n+…11.解∵Tk+1=Ckn·xn-k2·2k·x-k3=Ckn·2k·x3n-5k6,據(jù)題意,得C0n+C1n·2+C2n·22=129,解得n=8,∴Tk+1=Ck8·2k·x24-5k6,且0≤k≤8.∴當(dāng)k=0,k=6時(shí),24-5k6∈Z,∴n2-21n+98=0,∴n=7或n=14.當(dāng)n=7時(shí),展開式中二項(xiàng)式系數(shù)最大的項(xiàng)是T4和T5,設(shè)展開式中第k+1項(xiàng)系數(shù)最大,Ck12·4k≥Ck-112·4k-1,=C077+C177+C2772+…∴7777-15除以19余5,即n=5.令5r-15=0,得r=3,∴an=a1+(n-1)d=100+(n-1)·(-4)=104-4n.