【導(dǎo)讀】C.∠BCA=∠DCAD.∠B=∠D=90°3.(4分)如圖,AD⊥BE于點(diǎn)C,且AB=DE,BC=CE,5.(8分)如圖,從下列條件①AD=BC;②AC=BD;解:選擇①③.理由:∵∠C=∠D=90°,∴在Rt△ABC和Rt△BAD中,6.(4分)如圖,CD⊥AB,BE⊥AC,垂足分別為D,E,7.(4分)如圖,BE⊥AC于點(diǎn)E,CF⊥AB于點(diǎn)F,若BF=CE,8.(8分)已知:如圖,AD是△ABC的角平分線,且BD=CD,證明:∵DE⊥AB,DF⊥AC,∴∠AED=∠AFD=90°.在△AED與△AFD中,在Rt△BED與Rt△CFD中,9.在兩個(gè)直角三角形中有一對(duì)銳角相等,一組邊相等,10.如圖所示,在Rt△ACD和Rt△BCE中,∠C=90°,②∠DBC=∠CAD;③AO=BO;④AB∥CD;三角形A′B′C′中BC與B′C′邊上的高,且AB=A′B′,先證明Rt△ABC≌Rt△CED,從而∠ACB=∠D=30°,在△ABE和△CBD中,∴在Rt△ABD和Rt△FBD中,∵DG=DG,∴△ADG≌△FDG,∴∠AGD=∠FGD,