freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

證明數(shù)列前n項(xiàng)和不等式的定積分放縮法-資料下載頁(yè)

2025-10-25 22:04本頁(yè)面
  

【正文】 231。ln180。232。230。343180。L180。ln2n) (nl+∴a1+a2+L+ann+ln2ln(n+2) . 法2:積分法要證原命題,即證:231。230。1232。2246。247。ln(n+2)ln2 n+1248。1++L+11246。230。1++L+231。247。3n+1248。232。2230。1232。2n+2242。1xdx=lnxn+22法3:數(shù)歸證明:、(1)求證:2n++L+246。247。ln(n+2)ln2 n+1248。+2n+1(n2,n206。N)nn1n01法1:2=Cn+Cn+...+Cn+Cn;法2:數(shù)學(xué)歸納法 法3:函數(shù)法(求導(dǎo)),證明:()+()+…+(nn*nnn1n)+(nnn)nee1提示:借助e179。1+x證明x第四篇:裂項(xiàng)放縮證明數(shù)列不等式策略一、裂項(xiàng)放縮證明數(shù)列不等式若欲證不等式含有與自然數(shù)n有關(guān)的n項(xiàng)和,可采用數(shù)列中裂項(xiàng)求和等方法來解題。例1(全國(guó)I理22壓軸題)設(shè)數(shù)列{an}的前n項(xiàng)的和Sn=項(xiàng)an;(Ⅱ)設(shè)Tn=2n43an180。2n+1+23,n=1,2,3,ggg(Ⅰ)求首項(xiàng)a1與通nSn,n=1,2,3,ggg,證明:229。Tii=1例1(湖北理17)已知二次函數(shù)y=f(x)的圖像經(jīng)過坐標(biāo)原點(diǎn),其導(dǎo)函數(shù)為f39。(x)=6x2,數(shù)列{an}的前n項(xiàng)*和為Sn,點(diǎn)(n,Sn)(n206。N)均在函數(shù)y=f(x)的圖像上。(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;(Ⅱ)設(shè)bn=3anan+1,Tn是數(shù)列{bn}的前n項(xiàng)和,求使得Tnm20對(duì)所有n206。N*都成立的最小正整數(shù)m;例1(重慶理22壓軸題)設(shè)數(shù)列{a}滿足a1=2,an+1=an+n1an(n=1,2,L).(Ⅰ)證明an2n+1對(duì)一切正整數(shù)n成立;(Ⅱ)令bn=ann(n=1,2,L),判定b與bnn+1的大小,并說明理由例1已知n206。N*,求1+例1設(shè)an=1+2a+3+?+1n<2n+a+L+1na,a179。:an二、均值不等式放縮證明不等式 例2設(shè)Sn=例3已知函數(shù)f(x)=例3已知a,b為正數(shù),且a+b1=12+23+L+n(n+1).求證n(n+1)2Sn(n+1).4xx1+4求證:f(1)+f(2)+L+f(n)n+n+1.,試證:對(duì)每一個(gè)n206。N*,(a+b)nab179。2nn2n2n+1.策略三、調(diào)整分式值放縮證明數(shù)列不等式(尾式或局部放縮)一個(gè)分式若分母不變分子變大則分式值變大,若分子不變分母變大則分式值變??;一個(gè)真分式,分子、分母同時(shí)加上同一個(gè)正數(shù)則分式值變大(“加糖不等式”)姐妹不等式:bab+ma+m(ba0,m0)和bab+ma+m(ab0,m0)例3(福建理22壓軸題)已知數(shù)列{an}滿足a1=1,an+1=2an+1(n∈N*)(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;(Ⅱ)若數(shù)列{bn}滿足4b1明:例3證明:(1+1)(1+3)(1+5)L(1+2n1)即證:135L(2n1)例3證明:(1+1)(1+)(1+)L(1+713n2)-1 b2-24?4bn-1=(an+1)bn(n∈N*),證明:{bn}是等差數(shù)列。(Ⅲ)證n23<a1a2+a2a3+188。+anan+1<n2(n∈N).*2n+1和(112)(1114)(116)L(1+12n)12n+1246L2n2n+1和135L(2n1)246L2n2n+13n+已知a、b、c為三角形的三邊,求證:1<例3求證:13+1+13180。2+1+L+132n1abc++<2。b+ca+ca+b+1策略四、單調(diào)性放縮證明不等式例4(湖南理19)已知函數(shù)f(x)=xsinx,數(shù)列{an}滿足:0a11,an+1=f(an),n=1,2,3,:(I).0an+1an1。(II).a(chǎn)n+1例42(遼寧理21)已知函數(shù)f(x)=ax0a12,an+1=f(an),n206。N*x的最大值不大于.16,又當(dāng)x206。[11,]42時(shí)f(x)179。.(Ⅰ)求a的值;(Ⅱ)設(shè),證明an1n+1x1例4(北京理19)數(shù)列{xn}由下列條件確定:xn+1==a0,1230。a246。231。xn+247。,n206。N.(I)證明:對(duì)n179。2總有xn179。231。247。2232。xn248。a;(II)證明:對(duì)n179。2總有xn179。xn+1例4設(shè)Sn=2+例4求證:(1+1)(1+)(1+)L(1+12n1)2n+3+L+n(n+1).求證n(n+1)2Sn(n+1)2.策略五:二項(xiàng)式放縮證明不等式nn01nn012=(1+1)=Cn+Cn+L+Cn,2179。Cn+Cn=n+1,2179。C+C+C=例5已知a1=1,an+1=(1+例5證明2163。(1+n例5設(shè)n1,n206。N,求證(3)n0n1n2nn+n+2212n.證明ann(n1)(n179。2)e1n+n)an+n1n)8(n+1)(n+2)策略六:遞推放縮證明數(shù)列不等式例6(全國(guó)高考)設(shè)數(shù)列{a}滿足an+1=annan+1(n206。N+),當(dāng)a1179。3時(shí)證明對(duì)所有n179。1, 有(i)an179。n+2;n(ii)11+a1+11+a2+L+11+an163。例6(重慶理22壓軸題)數(shù)列{an}滿足a1=1且an+1=(1+1n+n)an+2n(n179。1).(Ⅰ)用數(shù)學(xué)歸納法證明:an179。2(n179。2);(Ⅱ)已知不等式ln(1+x)x對(duì)x0成立,證明:ane(n179。1),其中無理數(shù)e187。例6(湖北理22壓軸題)已知不等式12+13+L+1n12[logn],n206。N,n2.[log*2n]表示不超過log2b,n179。 的最大整數(shù)。設(shè)正項(xiàng)數(shù)列{an}滿足:a1=b(b0),an163。nan1n+an1,n179。2,n206。N+,證明:an2+b[logn]例6(浙江理20壓軸題)已知函數(shù)f(x)=x3+x2,數(shù)列{xn}(xn>0)的第一項(xiàng)x1=1,以后各項(xiàng)按如下方式取定:*曲線y=f(x)在(xn+!,f(xn+?。┨幍那芯€與經(jīng)過(0,0)和(xn,f(xn))兩點(diǎn)直線平行(如圖)。求證:當(dāng)n∈N時(shí)2(Ⅰ)xn+xn=3xn+1+2xn+1(Ⅱ)()n11n2163。xn163。()策略七:分項(xiàng)討論放縮證明數(shù)列不等式例(2004年全國(guó)3理22壓軸題)(14分)已知數(shù)列{an}的前n項(xiàng)和Sn滿足Sn=2an+(1)n,n179。1.(1)寫出數(shù)列{an}的前三項(xiàng)a1,a2,a3;(2)求數(shù)列{an}的通項(xiàng)公式;(3)證明:對(duì)任意的整數(shù)m4,有策略八: 數(shù)學(xué)歸納法證明數(shù)列不等式例8(江西理21倒二題)(12分)已知數(shù)列{an}的各項(xiàng)都是正數(shù)(1)證明anan+12,n206。N。(2)求數(shù)列{an}(江西理22壓軸題)已知數(shù)列{an}滿足:a1=1a4+1a5+L+1am.,且滿足:a0=1,an+1=an,(4an),n206。N.,且an=n179。2,n206。N)(1)求數(shù)列{an}2an-1+n-13nan-1*的通項(xiàng)公式;(2)證明:對(duì)于一切正整數(shù)n,不等式a1a2??an2n!第五篇:放縮法證明數(shù)列不等式經(jīng)典例題放縮法證明數(shù)列不等式主要放縮技能: =2= nn+1n(n+1)nn(n1)n1n114411===2()22n4n1(2n+1)(2n1)2n12n+1n242.=== ===2)= ====== ==(21)2(2n1)(2n2)(2n1)(2n11)+22(n+1)n11== n(n+1)2n+1n(n+1)2n+1n2n(n+1)2n+1x2x+n*c=(n206。N)=的最小值為,最大值為,且abnnn2x+1(1)求;(2)證明::161+{an}的前n項(xiàng)的和為sn,且an+2(1)求證:數(shù)列sn是等差數(shù)列; 11117+++L+ 444c14c2c34+L+17 1=2sn,n206。N*; an{}(2)解關(guān)于數(shù)列n的不等式:an+1(sn+1+sn)4n8(3)記bn=2sn,Tn=331111Tn+++L+,證明:1 2b1b2b3bn{an}滿足:237。n+2236。an252。an+1; 253。是公差為1的等差數(shù)列,且an+1=nn238。254。(1)求an;(2++L2 {an}中,已知a1=2,an+1an=2anan+1;(1)求an;(2)證明:a1(a11)+a2(a21)+a3(a31)+L+an(an1)32n+{an}滿足:a1=2,an+1=; n(n+)an+225112n(1)設(shè)bn=,求bn;(2)記=,求證:163。c1+c2+c3+L+ 162n(n+1)an+1an{an}的前n項(xiàng)的和為sn滿足:sn1,6sn=(an+1)(an+2);(1)求an;(2)設(shè)數(shù)列{bn}滿足an(2n1)=1,并記Tn=b1+b2+b3+L+bn,b求證:3Tn+1log2n(a+3)(函數(shù)的單調(diào)性,貝努力不等式,構(gòu)造,數(shù)學(xué)歸納法){an}滿足:a1=1,nan+1(n+1)an=+1,anan+1記b1=a1,bn=n[a1+(1)求an;(2)證明:(1+2111++L+](n179。2)。222a2a3an11111)(1+)(1+)L(1+)4 b1b2b3bn4
點(diǎn)擊復(fù)制文檔內(nèi)容
公司管理相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1