freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx新人教a版高中數(shù)學必修一131第2課時函數(shù)的最大小值課時跟蹤檢測-資料下載頁

2024-12-08 02:54本頁面

【導讀】x+7x∈[-1,,3.已知函數(shù)f=-x2+4x+a,x∈[0,1],若f有最小值-2,則f的最大值為。用定義證明函數(shù)在區(qū)間[1,+∞)上是增函數(shù);10.有甲、乙兩種商品,經(jīng)營銷售這兩種商品所能獲得的利潤依次是P(萬元)和Q(萬元),求得最值,故選A.∴fmin=f(-1)=6,∴函數(shù)f圖象的對稱軸為x=2.6.解析:作出圖象可知y=1x-1在[2,3]上是減函數(shù),ymin=13-1=12.又∵f的單調(diào)遞減區(qū)間為(-∞,3],8.解析:a2-4a+6=(a-2)2+2≥2,則a2-4a+6的下確界為2.9.解:證明:任取x1,x2∈[1,+∞),且x1<x2,則f-f=2x1+1x. ∵1≤x1<x2,∴x1-x2<0,>0,∴fmax=f=2&#215;4+14+1=95,令3-x=t,則x=3-t2,0≤t≤3.當t=32時,ymax=2120,此時x=,3-x=.

  

【正文】 2+ 1x2+ 1= x1- x2x1+ x2+. ∵ 1≤ x1x2, ∴ x1- x20, (x1+ 1)(x2+ 1)0, ∴ f(x1)- f(x2)0,即 f(x1)f(x2), ∴ 函數(shù) f(x)在 [1,+ ∞) 上是增函數(shù). (2)由 (1)知函數(shù) f(x)在區(qū)間 [2,4]上是增函數(shù), ∴ f(x)max= f(4)= 24 + 14+ 1 = 95, f(x)min= f(2)= 22 + 12+ 1 = 53. 10.解:設 對甲種商品投資 x萬元,則對乙種商品投資 (3- x)萬元,總利潤為 y萬元, 根據(jù)題意得 y= 15x+ 35 3- x(0≤ x≤3) . 令 3- x= t,則 x= 3- t2,0≤ t≤ 3. 所以 y= 15(3- t2)+ 35t=- 15(t- 32)2+ 2120, t∈ [0, 3 ]. 當 t= 32時, ymax= 2120,此時 x= ,3- x= . 由此可知,為獲得最大利潤,對甲、乙兩種商品的資金投入分別為 萬元和 萬元,獲得的最大利潤為 .
點擊復制文檔內(nèi)容
教學課件相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1