【總結(jié)】第二章平面向量,第一頁,編輯于星期六:點三十三分。,§5從力做的功到向量的數(shù)量積,第二頁,編輯于星期六:點三十三分。,,自主學(xué)習(xí)梳理知識,課前基礎(chǔ)梳理,第三頁,編輯于星期六:點三十三分。,,第四頁,編...
2024-10-22 18:50
【總結(jié)】Oxya引入:,點A可以用什么來表示??OxyA(a,b)aba:如果e1,e2是同一平面內(nèi)的兩個不共線的向量,那么對于這一平面內(nèi)的任一向量a,有且只有一對實數(shù)λ1,λ2使得a=λ1e1+λ2e2.不共線的兩向量e1,e2叫做這一平面內(nèi)所
2024-11-17 15:05
【總結(jié)】【金榜教程】2021年高中數(shù)學(xué)平面向量基本定理檢測試題北師大版必修4(30分鐘50分)一、選擇題(每小題4分,共16分)O是△ABC所在平面內(nèi)一點,D為BC邊中點,且2OAOBOC0???,那么()(A)AOOD?(B)AO2OD?(C)AO3OD?(D)2A
2024-12-03 03:14
【總結(jié)】平面向量基本定理問題情境火箭在飛行過程中的某一時刻速度可以分解成豎直向上和水平向前的兩個速度。在力的分解的平行四邊形過程中,我們看到一個力可以分解為兩個不共線方向的力之和。那么平面內(nèi)的任一向量否可以用兩個不共線的向量來表示呢?動畫演示平面向量基本定理12121122,,
2024-10-19 17:16
【總結(jié)】第一頁,編輯于星期六:點三十二分。,2.2平面向量的線性運算2.2.1向量加法運算及其幾何意義,第二頁,編輯于星期六:點三十二分。,,登高攬勝拓界展懷,課前自主學(xué)習(xí),第三頁,編輯于星期六:點三十二分。...
2024-10-22 18:48
【總結(jié)】第一頁,編輯于星期六:點三十二分。,2.2平面向量的線性運算2.2.2向量減法運算及其幾何意義,第二頁,編輯于星期六:點三十二分。,,登高攬勝拓界展懷,課前自主學(xué)習(xí),第三頁,編輯于星期六:點三十二分。...
【總結(jié)】::CBAABCD一.向量的加法:首尾相接共同起點ab?ab?aabbbab二.向量的減法:BADab?a共同起點指向被減數(shù)溫故知新1.當(dāng)時:0??2.當(dāng)時:0
2025-08-15 23:54
【總結(jié)】?1.平面向量共線的坐標(biāo)表示?設(shè)a=(x1,y1),b=(x2,y2),則a∥b?.?2.下列各組向量中,共線的是?()?A.a(chǎn)=(-1,2),b=(3,5)?B.a(chǎn)=(1,2),b=(2,1)?C.a(chǎn)=(2,-1),b=(3,4)?D.a(chǎn)=(-2,1
2025-08-05 18:26
【總結(jié)】平面向量的坐標(biāo)一、教學(xué)目標(biāo):(1)掌握平面向量正交分解及其坐標(biāo)表示.(2)會用坐標(biāo)表示平面向量的加、減及數(shù)乘運算.(3)理解用坐標(biāo)表示的平面向量共線的條件.教材利用正交分解引出向量的坐標(biāo),在此基礎(chǔ)上得到平面向量線性運算的坐標(biāo)表示及向量平行的坐標(biāo)表示;最后通過講解例題,鞏固知識結(jié)論,培養(yǎng)學(xué)生應(yīng)用能力.通過本節(jié)內(nèi)
2024-11-19 23:18
【總結(jié)】正交分解問題?問題,理論上,一條直線由該直線上的一個向量確定了,那么平面呢?設(shè)、是同一平面內(nèi)的兩個不共1e2e線的向量,a是這一平面內(nèi)的任一向量,1e2e我們研究a與、之間的關(guān)系。1ea2e物理學(xué)中的力的分解模型OC=OM+ON=
2025-07-23 03:15
【總結(jié)】向量的坐標(biāo)表示平面向量基本定理一、填空題1.若e1,e2是平面內(nèi)的一組基底,則下列四組向量能作為平面向量的基底的是________.①e1-e2,e2-e1②2e1+e2,e1+2e2③2e2-3e1,6e1-4e2④e1+e2,e1-e22.下面三種說法中,正確的是________.①一個平面
2024-12-05 10:15
【總結(jié)】人教版高一數(shù)學(xué)第二學(xué)期第五章第主講:特級教師王新敞《高中數(shù)學(xué)同步輔導(dǎo)課程》平面向量的基本定理2020/12/17特級教師王新敞----源頭學(xué)子2奎屯王新敞新疆教學(xué)目的:教學(xué)重點:教學(xué)難點:1.了解平面向量基本定理的證明.2.掌握平面向量基本定理及其應(yīng)用:①平面內(nèi)的任
2024-11-10 03:15
【總結(jié)】來源教學(xué)內(nèi)容:§教學(xué)目標(biāo)1.了解向量的物理背景及在物理中的意義2.理解向量、零向量、單位向量、相等向量的概念,會用字母表示向量,能讀寫已知圖中的向量;3.掌握向量的幾何表示,明確向量的長度、零向量、單位向量的幾何意義;4.了解共線向量、平行向量的概念,會根據(jù)圖形判定是否平行、共線、相
2024-12-08 16:21
【總結(jié)】平面向量,設(shè)a=(x1,y1),b=(x2,y2),為實數(shù)。(1)向量式:a∥b(b≠0)a=b;(2)坐標(biāo)式:a∥b(b≠0)x1y2-x2y1=0;,設(shè)a=(x1,y1),b=(x2,y2),(1)向量式:a⊥b(b≠0)ab=0;(2)坐標(biāo)式:a⊥bx1x2+y1y2=0;=(x1,y1),b=(x2,y2),則ab==x1x2+y1y2;其幾何意義是ab等于a的長度與b
2025-04-04 05:05
【總結(jié)】平面向量基本定理2022年8月22日星期一(0),,.(a0,0b0aabbab?????????向量與共線當(dāng)且僅當(dāng)有唯一一個實數(shù)使若當(dāng)時,不唯一;當(dāng)時,不存在)一、課前準(zhǔn)備::共線向量定理復(fù)習(xí)1:12122:,
2025-07-25 16:48