【導(dǎo)讀】,且c、d不為0,那么下列不等式成立的是()。,那么a,2a,a?的大小關(guān)系是()。恒成立的個(gè)數(shù)是()。D.隨x值的變化而變化。),若再添進(jìn)m克糖(0m?),則糖水就變甜了,試
【總結(jié)】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》必修5《基本不等式-均值不等式》審校:王偉教學(xué)目標(biāo)?推導(dǎo)并掌握兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)這個(gè)重要定理;利用均值定理求極值。了解均值不等式在證明不等式中的簡(jiǎn)單應(yīng)用。?教學(xué)重點(diǎn):?推導(dǎo)并掌握兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)這個(gè)重要定
2025-10-31 03:52
【總結(jié)】章末整合提升專題一:解不等式立,證明你的結(jié)論.例1:設(shè)f(x)=ax2+bx+c,若f(1)=72,問(wèn)是否存在a、b、c∈R,使得不等式x2+12≤f(x)≤2x2+2x+32對(duì)一切實(shí)數(shù)x都成解:由f(1)=72,得a+b+c=
2025-11-03 18:09
【總結(jié)】排序不等式問(wèn)題探究A1A2AiAnB1B2BiBnOAB問(wèn)題探究12121122,,,,.nnnncccbbbSacacac???設(shè)是數(shù)組的任何一個(gè)排列何時(shí)取得最大值1211121321
2025-10-31 08:08
【總結(jié)】精品資源不等式與不等式組復(fù)習(xí)課一、不等式及一元一次不等式概念判斷下列不等式哪些是一元一次不等式,哪些不是?1、2、3、4、5、二、不等式的性質(zhì)(用符號(hào)語(yǔ)言來(lái)表示)1、若①②③④2、若三、解下列一元一次不等式并將解集在數(shù)軸上表示。①
2025-04-16 12:51
【總結(jié)】不等關(guān)系與不等式(第一課時(shí))一、教學(xué)任務(wù)分析1、感受不等關(guān)系的普遍存在通過(guò)一系列的具體情境,使學(xué)生感受到在現(xiàn)實(shí)世界和日常生活中存在著大量的不等關(guān)系。2、利用不等式(組)表示實(shí)際問(wèn)題中的不等關(guān)系通過(guò)具體問(wèn)題情境,讓學(xué)生學(xué)習(xí)如何利用不等式(組)研究及表示不等關(guān)系,進(jìn)一步理解不等式(組)刻畫(huà)不等關(guān)系的意義和價(jià)值。3、初步掌握運(yùn)用作差比較法比較實(shí)數(shù)和代數(shù)式的大小。二、教學(xué)重
【總結(jié)】課題:§不等式與不等關(guān)系第1課時(shí)授課類型:新授課【教學(xué)目標(biāo)】1.知識(shí)與技能:通過(guò)具體情景,感受在現(xiàn)實(shí)世界和日常生活中存在著大量的不等關(guān)系,理解不等式(組)的實(shí)際背景,掌握不等式的基本性質(zhì);2.過(guò)程與方法:通過(guò)解決具體問(wèn)題,學(xué)會(huì)依據(jù)具體問(wèn)題的實(shí)際背景分析問(wèn)題、解決問(wèn)題的方法;3.情態(tài)與價(jià)值:通過(guò)解決具體問(wèn)題,體
2025-11-09 15:56
【總結(jié)】第三章不等式§不等關(guān)系與不等式自主學(xué)習(xí)知識(shí)梳理1.比較實(shí)數(shù)a,b的大小(1)文字?jǐn)⑹鋈绻鸻-b是正數(shù),那么a________b;如果a-b為_(kāi)_____,那么a=b;如果a-b是負(fù)數(shù),那么a______b,反之也成立.(2)符號(hào)表示a-b0?
2025-11-10 06:19
【總結(jié)】.......初二數(shù)學(xué)不等式解下列不等式:(1)x-17<-5;(2)>-3;(3)>11;(4)>.(5)3x+1>
2025-03-25 07:46
【總結(jié)】第三章不等式課題:§不等式與不等關(guān)系第1課時(shí)授課類型:新授課【教學(xué)目標(biāo)】1.知識(shí)與技能:通過(guò)具體情景,感受在現(xiàn)實(shí)世界和日常生活中存在著大量的不等關(guān)系,理解不等式(組)的實(shí)際背景,掌握不等式的基本性質(zhì);2.過(guò)程與方法:通過(guò)解決具體問(wèn)題,學(xué)會(huì)依據(jù)具體問(wèn)題的實(shí)際背景分析問(wèn)題、解決問(wèn)題的方法;3.情態(tài)與
2025-11-10 20:24
【總結(jié)】.第九章不等式與不等式組測(cè)試1不等式及其解集學(xué)習(xí)要求:知道不等式的意義;知道不等式的解集的含義;會(huì)在數(shù)軸上表示解集.(一)課堂學(xué)習(xí)檢測(cè)一、填空題:1.用“<”或“>”填空:⑴4______-6;(2)-3______0;(3)-5______-1;(4)6+2______5+2;(5)6+(-2)______5+(-2);(6)6
2025-06-24 19:20
【總結(jié)】例1、甲、乙兩電腦批發(fā)商每次在同一電腦耗材廠以相同價(jià)格購(gòu)進(jìn)電腦芯片。甲、乙兩公司共購(gòu)芯片兩次,每次的芯片價(jià)格不同,甲公司每次購(gòu)10000片芯片,乙公司每次購(gòu)10000元芯片,兩次購(gòu)芯片,哪家公司平均成本低?請(qǐng)給出證明過(guò)程。分析:設(shè)第一、第二次購(gòu)芯片的價(jià)格分別為每片a元和b元,列出甲、乙兩公司的平均價(jià)格,然后利用不等式知識(shí)論證。解:
2025-10-31 01:27
【總結(jié)】不等式與不等式組一、知識(shí)結(jié)構(gòu)圖二、知識(shí)要點(diǎn)(一、)不等式的概念1、不等式:一般地,用不等符號(hào)(“<”“>”“≤”“≥”)表示大小關(guān)系的式子,叫做不等式,用“≠”表示不等關(guān)系的式子也是不等式。不等號(hào)主要包括:>、<、≥、≤、≠。2、不等式的解:使不等式左右兩邊成立的未知數(shù)的值,叫做不等式的解。3、不等式的解集:一個(gè)含有未知數(shù)的不等式的所有解,組
【總結(jié)】第六章:不等式期末復(fù)習(xí):江蘇省前黃高級(jí)中學(xué)高一數(shù)學(xué)組呂楊春第一部分:基本概念1、比較大?。ㄗ鞑睢纸庖蚴健袛喾?hào))注:分解因式到不能分解為止;判斷符號(hào)的時(shí)候注意有時(shí)候要討論2、不等式的性質(zhì)是證明不等式和解不等式的基礎(chǔ)。不等式的基本性質(zhì)有:1)對(duì)稱性:ab?ba;2)
2025-10-31 08:12
【總結(jié)】三都民中高一數(shù)學(xué)導(dǎo)學(xué)不等關(guān)系與不等式編寫(xiě)人:潘洪存審核人:平立科班級(jí):姓名:一:教學(xué)目標(biāo)1、了解不等式與不等式組的實(shí)際背景;掌握常用不等式的基本基本性質(zhì);、通過(guò)解決具體問(wèn)題,學(xué)會(huì)依據(jù)具體問(wèn)題的實(shí)際背景分析問(wèn)題、解決問(wèn)題的方法;二:重點(diǎn)、難點(diǎn):(1)用不等式(組)表
2025-08-17 07:13
【總結(jié)】2abab??(0,0)ab??學(xué)習(xí)目標(biāo)?會(huì)用基本不等式證明一些簡(jiǎn)單不等式;?會(huì)用基本不等式解決簡(jiǎn)單的最值問(wèn)題.(重點(diǎn))如果a、b?R,那么a2+b2?2ab(當(dāng)且僅當(dāng)a=b時(shí)取“=”號(hào))如果a,b是正數(shù),那么(當(dāng)且僅當(dāng)a=b
2025-11-03 17:13