【導讀】復習2:曲線與其所對應的方程(,)0fxy?之間有哪些關系?問題1:設A、B兩點的坐標是,(3,7),求線段AB的垂直平分線的方程.,如何建立坐標系求AB的垂直平分線的方程。變式1:已知一條直線l和它上方的一個點F,點F到l的距離是2,一條曲線也在l的上方,(1,0),直線AM,BM相交于點M,且它們的斜率之和是2,求點M的軌跡方程。
【總結】求曲線的方程.一:直接法.例1、△ABC的頂點A固定,點A的對邊BC的長是2a,邊BC上高的長是b,邊BC沿一定直線移動,求△ABC外心的軌跡方程。1、設A,B兩點的坐標分別是(-1,-1),(3,7).求線段AB的垂直平分線的方程練習40頁第2題求曲線的方程.
2024-11-17 15:21
【總結】曲線和方程學習目標:1、了解平面直角坐標中“曲線的方程”和“方程的曲線”含義.2、會判定一個點是否在已知曲線上.一、知識回顧并引題:二、自學課本7573?P并記下重點,積極思考問題:三、自我檢測:1、到兩坐標軸距離相等的點組成的直線方程是0??yx嗎?2、已
2024-11-30 14:35
【總結】2.雙曲線的簡單幾何性質(共2課時)一、教學目標1.了解雙曲線的簡單幾何性質,如范圍、對稱性、頂點、漸近線和離心率等。2.能用雙曲線的簡單幾何性質解決一些簡單問題。二、教學重點、難點重點:雙曲線的幾何性質及初步運用。難點:雙曲線的漸近線。三、教學過程(一)復習提問引入新課1.橢圓有哪些幾何性質,是
2024-12-08 08:44
【總結】軌跡的“純粹性”與“完備性”“曲線的方程與方程的曲線”的定義包括兩個方面:一是曲線上點的坐標都是方程的解———稱為純粹性;二是以方程的解為坐標的點都在曲線上———稱為完備性.兩者缺一不可,否則就容易導致失誤.例1方程22(2)40xyxy?????的曲線是()A.兩個點B.一個圓
2024-11-20 00:26
【總結】§雙曲線及其標準方程【使用說明及學法指導】1.先自學課本,理解概念,完成導學提綱;2.小組合作,動手實踐?!緦W習目標】1.從具體情境中抽象出雙曲線的模型2.理解雙曲線的定義;3.掌握雙曲線的標準方程.【重點】理解雙曲線的定義【難點】掌握雙曲線的標準方程一、自主學習(一)復
2024-11-28 23:00
【總結】圓錐曲線綜合復習講義【基礎概念填空】橢圓1.橢圓的定義:平面內與兩定點F1,F2的距離的和__________________的點的軌跡叫做橢圓。這兩個定點叫做橢圓的_________,兩焦點之間的距離叫做橢圓的________.:橢圓)0ba(1byax2222????的中心在______,焦點在_____
2024-11-30 04:03
【總結】曲線和方程和方程的曲線的概念課堂新授yxo?M(x0,y0)X-y=0?M(x0,y0)xyo)0(2??aaxy曲線的方程與方程的曲線:課堂新授(在合)上的點。(合在)這個方程叫做這個曲線的方程這個曲線叫做這個方程的曲線課堂新授
2024-11-18 00:48
【總結】曲線和方程——(1)、求第一、三象限里兩軸間夾角平分線的坐標滿足的關系第一、三象限角平分線??點的橫坐標與縱坐標相等x=y(或x-y=0)l得出關系:lx-y=0xy0(1)l上點的坐標都是方程x-y=0的解(2)以方程x-y=0的解為坐標的點都在上l曲
2024-11-18 15:25
【總結】求曲線方程(1)曲線上點的坐標都是方程F(x,y)=0的解;(2)以方程F(x,y)=0的解為坐標的點都在曲線C上.曲線C叫做方程F(x,y)=0的曲線,方程F(x,y)=0叫做曲線C的方程.求曲線方程的步驟,設動點M(x,y);p的點M的集合P={M|p(M)};p
2024-11-18 08:46
【總結】【課堂新坐標】(教師用書)2021-2021學年高中數學求曲線的方程課后知能檢測蘇教版選修2-1一、填空題1.已知點A(-5,0),B(5,0),動點P到A,B距離的平方和為122,則動點P滿足的方程是________.【解析】依題意,設動點P(x,y).由PA2+PB2=122,得(x+5)2
2024-12-04 21:34
【總結】曲線與方程(2)【學習目標】1.求曲線的方程;2.通過曲線的方程,研究曲線的性質.【重點難點】重點求曲線方程的一般步驟難點依據題目特點,恰當選擇坐標系及考查曲線方程的點的純粹性、完備性.【學習過程】一、自主預習(預習教材理P36~P37,找出疑惑之處)復習1:已
2024-12-04 20:40
【總結】雙曲線的標準方程課題第1課時計劃上課日期:教學目標知識與技能1.了解雙曲線的標準方程的推導過程,能根據已知條件求雙曲線的標準方程.2.掌握雙曲線兩種標準方程的形式過程與方法情感態(tài)度與價值觀教學重難點根據已知條件求雙曲線的標準方程.橢圓和雙曲線
2024-12-05 09:30
【總結】課題雙曲線及其標準方程學習目標,幾何圖形和標準方程的推導過程...,承上啟下;可以結合實例,觀察分析,培養(yǎng)“應用數學意識”,進一步鞏固數形結合思想.學習重點:掌握雙曲線的標準方程,會利用雙曲線的定義和標準方程解決簡單的問題。學習難點:幾何圖形和標準方程的推導過程.學習方法:以講學稿為依托
2024-11-19 15:17
【總結】§圓錐曲線教學目標,經歷從具體情境中抽象出橢圓、拋物線模型的過程,掌握它們的定義,并能用數學符號或自然語言的描述。2.通過用平面截圓錐面,感受、了解雙曲線的定義。能用數學符號或自然語言描述雙曲線的定義。教學重點、難點重點:橢圓、拋物線、雙曲線的定義。難點:用數學符號或自然語言描述三種曲線的定義[教
2024-12-08 21:22
【總結】圓錐曲線與方程§MQF2PO1O2VF1古希臘數學家Dandelin在圓錐截面的兩側分別放置一球,使它們都與截面相切(切點分別為F1,F2),又分別與圓錐面的側面相切(兩球與側面的公共點分別構成圓O1和圓O2).過M點作圓錐面的一條母線分別交圓O1,圓O2與
2024-11-17 23:31