freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

初中數(shù)學(xué)習(xí)題變式訓(xùn)練的研究在教學(xué)中的應(yīng)用-資料下載頁(yè)

2025-09-29 20:01本頁(yè)面
  

【正文】 是等腰三角形,教師繼續(xù)引導(dǎo)學(xué)生思考能否有其它的方法證明,并適時(shí)提問還有沒有其他方法證明△ABC是等腰三角形,學(xué)生馬上想到剛學(xué)的在一個(gè)三角形中等角對(duì)等邊的知識(shí),于是把問題轉(zhuǎn)化到如何證明∠ABC=∠ACB,通過學(xué)生討論得到兩種證明角的方法,一利用等角的余角相等,二利用外角或三角形內(nèi)角之和為180度得到兩個(gè)角相等。又如在講解“求解相交兩圓的圓心距”的問題時(shí)學(xué)生往往會(huì)犯得出一個(gè)解而丟掉另一個(gè)解的錯(cuò)誤。我先用運(yùn)動(dòng)的觀點(diǎn)向?qū)W生解釋兩圓相交的形成,當(dāng)兩圓相切時(shí),如果一圓的圓心繼續(xù)向另一圓的圓心靠攏,當(dāng)兩圓有兩個(gè)公共點(diǎn)時(shí)叫兩圓相交。然后我在黑板上畫出了圓心在公共弦兩側(cè)的相交兩圓,待學(xué)生根據(jù)已知求出圓心距以后,讓一圓的圓心繼續(xù)向另一圓的圓心靠攏,當(dāng)兩圓的圓心在公共弦的同側(cè)時(shí),再讓學(xué)生計(jì)算兩圓的圓心距,這時(shí)學(xué)生發(fā)現(xiàn)在相同已知條件下兩種情況算得的結(jié)果并不相同。由此得出兩圓相交有圓心在公共弦的兩側(cè)或同側(cè)兩種情況的結(jié)論。這兩題題從不同的角度進(jìn)行多向思維,把各個(gè)知識(shí)點(diǎn)有機(jī)地聯(lián)系起來,發(fā)展了學(xué)生的多向思維能力。(三)、一題多變,總結(jié)規(guī)律,培養(yǎng)學(xué)生思維的探索性和深刻性。通過變式教學(xué),不是解決一個(gè)問題,而是解決一類問題,遏制“題海戰(zhàn)術(shù)”,開拓學(xué)生解題思路,培養(yǎng)學(xué)生的探索意識(shí),實(shí)現(xiàn)“以少勝多”。伽利略曾說過“科學(xué)是在不斷改變思維角度的探索中前進(jìn)的”。故而課堂教學(xué)要常新、善變,通過原題目延伸出更多具有相關(guān)性、相似性、相反性的新問題,深刻挖掘例習(xí)題的教育功能。譬如書本上有這樣一道題,求證:順次連接四邊形各邊中點(diǎn)所得的四邊形是平行四邊形。教師可以不失時(shí)機(jī)地進(jìn)行變式,調(diào)動(dòng)起學(xué)生的思維興趣。變式(1)順次連接矩形各邊中點(diǎn)所得四邊形是什么圖形?變式(2)順次連接菱形各邊中點(diǎn)所得四邊形是什么圖形?變式(3)順次連接正方形各邊中點(diǎn)所得四邊形是什么圖形?做完這四個(gè)練習(xí),教師還可以進(jìn)一步引導(dǎo)學(xué)生概括影響組成圖形形狀的本質(zhì)的東西是原來四邊形的對(duì)角線所具有的特征。又如應(yīng)用題教學(xué)是初中教學(xué)中的一個(gè)難點(diǎn),在教學(xué)中就可以把同類型的題目通過變式的方式展現(xiàn)給學(xué)生,把學(xué)生的思維逐步引向深刻。例如在講解一元一次方程的實(shí)踐和探究這節(jié)課時(shí),教師從奧運(yùn)冠軍孟關(guān)良訓(xùn)練為題材編了一題關(guān)于追及問題的應(yīng)用題,一膄快艇與孟關(guān)良的皮艇同在起點(diǎn),快艇以每秒5米的速度先行了20米孟關(guān)良為了追上快艇,必須奮力前劃,同學(xué)們,請(qǐng)你想一想他如果以每秒6米的速度劃行多少秒才能追上快艇?然后教師可對(duì)本例作以下變式。變式1:一膄快艇與孟關(guān)良的皮艇同在起點(diǎn),快艇以每秒5米的速度先行了20秒,孟關(guān)良為了追上快艇,必須奮力前劃,同學(xué)們,請(qǐng)你想一想他如果以每秒6米的速度劃行多少秒才能追上快艇?(從先行20米改為先行了20秒)變式2:我們學(xué)校有一塊300米的跑道在比賽跑步時(shí)經(jīng)常會(huì)涉及到相遇問題和追及問題現(xiàn)有甲、乙兩人比賽跑步,甲的速度是10米/秒,乙的速度是8米/秒,他們兩人同地出發(fā)(1)兩人同時(shí)相向而行經(jīng)過幾秒兩人相遇。(2)兩人同時(shí)同向而行經(jīng)過幾秒兩第一次相遇。(3)乙先出發(fā)5秒,然后甲開始出發(fā),問甲經(jīng)過幾秒兩人第一次相遇。這題該為平時(shí)學(xué)生熟悉的操場(chǎng)環(huán)形跑道,這里三題也是一組變式題,(1)、(2)是同時(shí)同地出發(fā)的相遇和追及問題,(3)是不同時(shí)出發(fā)相遇和追及問題,這題還蘊(yùn)涵著分類討論的思想。變式3:一膄快艇與孟關(guān)良的皮艇同在起點(diǎn),快艇以每秒5米的速度先行了10秒,教練要求他用45秒追上快艇,孟關(guān)良為了追上快艇,必須奮力前劃,他以每秒6米的速度劃行,劃了5秒后他發(fā)現(xiàn)用這樣的速度不能在規(guī)定的時(shí)間內(nèi)追上,請(qǐng)問他的想法用45秒不能追上快艇對(duì)不對(duì)?如果他要追上請(qǐng)你算一算孟關(guān)良后來要用多少速度才能在規(guī)定的時(shí)間內(nèi)追上快艇?這樣的變式覆蓋了同時(shí)出發(fā)相遇問題、不同時(shí)出發(fā)相遇問題、同時(shí)出發(fā)和不同時(shí)出發(fā)的追及問題等行程問題的基本類型。這樣通過一個(gè)題的練習(xí)既解決了一類問題,又歸納出各量之間最本質(zhì)的東西,今后碰到類似問題學(xué)生思維指向必定準(zhǔn)確,很好培養(yǎng)了學(xué)生思維的深刻性。學(xué)生也不必陷于題海而不能自拔。(三)、一題多問,通過變式引申發(fā)展,擴(kuò)充、發(fā)展原有功能,培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和探究、概括能力牛頓說過:“沒有大膽的猜想就做不出偉大的發(fā)現(xiàn)。”中學(xué)生的想象力豐富,因此,可以通過例題所提供的結(jié)構(gòu)特點(diǎn),鼓勵(lì)、引導(dǎo)學(xué)生大膽地猜想,以培養(yǎng)學(xué)生的創(chuàng)造性思維和發(fā)散思維。教學(xué)中要特別重視對(duì)課本例題和習(xí)題的“改裝”或引申。數(shù)學(xué)的思想方法都隱藏在課本例題或習(xí)題中,我們?cè)诮虒W(xué)中要善于對(duì)這類習(xí)題進(jìn)行必要的挖掘,即通過一個(gè)典型的例題,最大可能的覆蓋知識(shí)點(diǎn),把分散的知識(shí)點(diǎn)串成一條線,往往會(huì)起到意想不到的效果,有利于知識(shí)的建構(gòu)。如,八年級(jí)第二學(xué)期練習(xí)冊(cè)中有這樣一個(gè)習(xí)題:如圖(一)在DABC中,208。B=208。C,點(diǎn)D是邊BC上的一點(diǎn),DE^AC,DF^AB,垂足分別是E、F,AB=10cm,DE=5cm,DF=3 cm,求(1)SDABC。(2)AB上的高。上題通過連接AD分割成兩個(gè)以腰為底的三角形即可求解SDABC=40 cm2 ;借助于添加AB上的高CH,利用面積公式和第一題的結(jié)論,而是繼續(xù)問:3+5=8,在此題中是否是一個(gè)巧合?探究DE、DF、CH之間的內(nèi)在聯(lián)系,(學(xué)生猜想CH=DE+DF)。引出變式題(1)如圖(二)在DABC中,208。B=208。C,點(diǎn)D是邊BC上的任一點(diǎn),DE^AC,DF^AB,CH^AB,垂足分別是E、F、H,求證:CH=DE+DF 在計(jì)算例題的基礎(chǔ)上,學(xué)生已經(jīng)具有了用面積的不同求法把各條垂線段聯(lián)系起來的意識(shí),此題的證明很容易解決。在學(xué)生思維的積極性充分調(diào)動(dòng)起來的此時(shí),我又借機(jī)給出變式(2)如圖(三)在等邊DABC中,P是形內(nèi)任意一點(diǎn),PD^AB于D,PE^BC于E,PF^AC于F,求證PD+PE+PF是一個(gè)定值。通過這組變式訓(xùn)練,面積法在幾何計(jì)算和證明中的應(yīng)用得到了很好的體現(xiàn),同時(shí)這一組變式訓(xùn)練經(jīng)歷了一個(gè)特殊到一般的過程,有助于深化、鞏固知識(shí),學(xué)生猜想、歸納能力也有了進(jìn)一步提高,更重要的是培養(yǎng)學(xué)生的問題意識(shí)和探究意識(shí)??傊跀?shù)學(xué)課堂教學(xué)中,遵循學(xué)生認(rèn)知發(fā)展規(guī)律,根據(jù)教學(xué)內(nèi)容和目標(biāo)加強(qiáng)變式訓(xùn)練,對(duì)鞏固基礎(chǔ)、培養(yǎng)思維、提高能力有著重要的作用。特別是,變式訓(xùn)練能培養(yǎng)培養(yǎng)學(xué)生敢于思考,敢于聯(lián)想,敢于懷疑的品質(zhì),培養(yǎng)學(xué)生自主探究能力與創(chuàng)新精神。當(dāng)然,課堂教學(xué)中的變式題最好以教材為源,以學(xué)生為本,體現(xiàn)出“源于課本,高于課本”,并能在日常教學(xué)中滲透到學(xué)生的學(xué)習(xí)中去。讓學(xué)生也學(xué)會(huì)“變題”,使學(xué)生自己去探索、分析、綜合,以提高學(xué)生的數(shù)學(xué)素質(zhì)。參考文獻(xiàn):中小學(xué)數(shù)學(xué)(2004第4期)《數(shù)學(xué)教育改革與研究》2004年3月上海市普通中小學(xué)數(shù)學(xué)課程標(biāo)準(zhǔn)《全國(guó)中小學(xué)教師繼續(xù)教育》《數(shù)學(xué)教育概論》,李玉琪著,中國(guó)科學(xué)技術(shù)出版社
點(diǎn)擊復(fù)制文檔內(nèi)容
數(shù)學(xué)相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1