freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx年全國普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(新課標(biāo)ii卷)詳解[小編整理]-資料下載頁

2024-10-08 19:21本頁面
  

【正文】 求向量夾角,:以D為坐標(biāo)原點(diǎn),DA,DC,DD1為x,y,z軸建立空間直角坐標(biāo)系,則,所以, 因?yàn)?,所以異面直線與所成角的余弦值為,:利用法向量求解空間線面角的關(guān)鍵在于“四破”:第一,破“建系關(guān)”,構(gòu)建恰當(dāng)?shù)目臻g直角坐標(biāo)系;第二,破“求坐標(biāo)關(guān)”,準(zhǔn)確求解相關(guān)點(diǎn)的坐標(biāo);第三,破“求法向量關(guān)”,求出平面的法向量;第四,破“應(yīng)用公式關(guān)”.,則的最大值是 .【答案】A 【解析】 【詳解】分析:先確定三角函數(shù)單調(diào)減區(qū)間,:因?yàn)?,所以由?因此,從而的最大值為,:函數(shù)的性質(zhì):(1).(2)周期(3)由 求對(duì)稱軸,(4)由求增區(qū)間;,,則().【答案】C 【解析】 分析:先根據(jù)奇函數(shù)性質(zhì)以及對(duì)稱性確定函數(shù)周期,:因?yàn)槭嵌x域?yàn)榈钠婧瘮?shù),且,所以, 因此,因,所以,從而,:函數(shù)的奇偶性與周期性相結(jié)合的問題多考查求值問題,常利用奇偶性及周期性進(jìn)行變換,將所求函數(shù)值的自變量轉(zhuǎn)化到已知解析式的函數(shù)定義域內(nèi)求解. ,是橢圓的左,右焦點(diǎn),是的左頂點(diǎn),點(diǎn)在過且斜率為的直線上,為等腰三角形,則的離心率為 .【答案】D 【解析】 【詳解】分析:先根據(jù)條件得PF2=2c,再利用正弦定理得a,c關(guān)系,:因?yàn)闉榈妊切?,所以PF2=F1F2=2c, 由斜率為得,由正弦定理得, 所以,:解決橢圓和雙曲線的離心率的求值及范圍問題其關(guān)鍵就是確立一個(gè)關(guān)于的方程或不等式,再根據(jù)的關(guān)系消掉得到的關(guān)系式,而建立關(guān)于的方程或不等式,要充分利用橢圓和雙曲線的幾何性質(zhì)、填空題:本題共4小題,每小題5分,共20分。. 【答案】 【解析】 【分析】 先求導(dǎo)數(shù),再根據(jù)導(dǎo)數(shù)幾何意義得切線斜率,最后根據(jù)點(diǎn)斜式求切線方程.【詳解】 【點(diǎn)睛】求曲線的切線要注意“過點(diǎn)P的切線”與“在點(diǎn)P處的切線”的差異,過點(diǎn)P的切線中,點(diǎn)P不一定是切點(diǎn),點(diǎn)P也不一定在已知曲線上,而在點(diǎn)P處的切線, 則的最大值為__________. 【答案】 【解析】 【分析】 作出可行域,根據(jù)目標(biāo)函數(shù)的幾何意義可知當(dāng)時(shí),.【詳解】不等式組表示的可行域是以為頂點(diǎn)的三角形區(qū)域,如下圖所示,目標(biāo)函數(shù)的最大值必在頂點(diǎn)處取得,易知當(dāng)時(shí),.【點(diǎn)睛】線性規(guī)劃問題是高考中??伎键c(diǎn),主要以選擇及填空的形式出現(xiàn),基本題型為給出約束條件求目標(biāo)函數(shù)的最值,主要結(jié)合方式有:截距型、斜率型、則__________. 【答案】 【解析】 【詳解】因?yàn)?,所以,?因?yàn)?,所以,?①②得,即,解得,故本題正確答案為 ,母線,所成角的余弦值為,與圓錐底面所成角為45176。,若的面積為,則該圓錐的側(cè)面積為__________. 【答案】 【解析】 【詳解】分析:先根據(jù)三角形面積公式求出母線長,再根據(jù)母線與底面所成角得底面半徑,:因?yàn)槟妇€,所成角的余弦值為,所以母線,所成角的正弦值為,因?yàn)榈拿娣e為,設(shè)母線長為所以,因?yàn)榕c圓錐底面所成角為45176。,所以底面半徑為 因此圓錐的側(cè)面積為 三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。第17~21題為必考題,每個(gè)試題考生都必須作答。第223為選考題,考生根據(jù)要求作答。學(xué)科amp。網(wǎng)(一)必考題:共60分。,已知,. (1)求的通項(xiàng)公式;(2)求,并求的最小值. 【答案】(1)an=2n–9,(2)Sn=n2–8n,最小值為–16. 【解析】 分析:(1)根據(jù)等差數(shù)列前n項(xiàng)和公式,求出公差,再代入等差數(shù)列通項(xiàng)公式得結(jié)果,(2)根據(jù)等差數(shù)列前n項(xiàng)和公式得的二次函數(shù)關(guān)系式,:(1)設(shè){an}的公差為d,由題意得3a1+3d=–15. 由a1=–7得d=2. 所以{an}的通項(xiàng)公式為an=2n–9.(2)由(1)得Sn=n2–8n=(n–4)2–16. 所以當(dāng)n=4時(shí),Sn取得最小值,最小值為–16. 點(diǎn)睛:數(shù)列是特殊的函數(shù),研究數(shù)列最值問題,可利用函數(shù)性質(zhì),(單位:億元)的折線圖. 為了預(yù)測該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額,建立了與時(shí)間變量的兩個(gè)線性回歸模型.根據(jù)2000年至2016年的數(shù)據(jù)(時(shí)間變量的值依次為)建立模型①:;根據(jù)2010年至2016年的數(shù)據(jù)(時(shí)間變量的值依次為)建立模型②:.(1)分別利用這兩個(gè)模型,求該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額的預(yù)測值;(2)你認(rèn)為用哪個(gè)模型得到的預(yù)測值更可靠?并說明理由. 【答案】(1)利用模型①,利用模型②,(2)利用模型②得到的預(yù)測值更可靠. 【解析】 【詳解】分析:(1)兩個(gè)回歸直線方程中無參數(shù),所以分別求自變量為2018時(shí)所對(duì)應(yīng)的函數(shù)值,就得結(jié)果。(2)根據(jù)折線圖知2000到2009,與2010到2016是兩個(gè)有明顯區(qū)別的直線,且2010到2016的增幅明顯高于2000到2009,也高于模型1的增幅,:(1)利用模型①,該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額的預(yù)測值為 =–+19=(億元). 利用模型②,該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額的預(yù)測值為 =99+9=(億元).(2)利用模型②得到預(yù)測值更可靠. 理由如下:(i)從折線圖可以看出,2000年至2016年的數(shù)據(jù)對(duì)應(yīng)的點(diǎn)沒有隨機(jī)散布在直線y=–+,這說明利用2000年至2016年的數(shù)據(jù)建立的線性模型①不能很好地描述環(huán)境基礎(chǔ)設(shè)施投資額的變化趨勢(shì).2010年相對(duì)2009年的環(huán)境基礎(chǔ)設(shè)施投資額有明顯增加,2010年至2016年的數(shù)據(jù)對(duì)應(yīng)的點(diǎn)位于一條直線的附近,這說明從2010年開始環(huán)境基礎(chǔ)設(shè)施投資額的變化規(guī)律呈線性增長趨勢(shì),利用2010年至2016年的數(shù)據(jù)建立的線性模型=99+,因此利用模型②得到的預(yù)測值更可靠.(ii)從計(jì)算結(jié)果看,相對(duì)于2016年的環(huán)境基礎(chǔ)設(shè)施投資額220億元,由模型①,而利用模型②得到的預(yù)測值的增幅比較合理,說明利用模型②得到的預(yù)測值更可靠. 點(diǎn)睛:若已知回歸直線方程,則可以直接將數(shù)值代入求得特定要求下的預(yù)測值;若回歸直線方程有待定參數(shù),過且斜率為的直線與交于,兩點(diǎn),.(1)求的方程;(2)求過點(diǎn),且與的準(zhǔn)線相切的圓的方程. 【答案】(1)y=x–1,(2)或. 【解析】 【詳解】分析:(1)根據(jù)拋物線定義得,再聯(lián)立直線方程與拋物線方程,利用韋達(dá)定理代入求出斜率,即得直線的方程;(2)先求AB中垂線方程,即得圓心坐標(biāo)關(guān)系,再根據(jù)圓心到準(zhǔn)線距離等于半徑得等量關(guān)系,解方程組可得圓心坐標(biāo)以及半徑,:(1)由題意得F(1,0),l的方程為y=k(x–1)(k0). 設(shè)A(x1,y1),B(x2,y2). 由得.,故. 所以. 由題設(shè)知,解得k=–1(舍去),k=1. 因此l的方程為y=x–1.(2)由(1)得AB的中點(diǎn)坐標(biāo)為(3,2),所以AB的垂直平分線方程為,即. 設(shè)所求圓的圓心坐標(biāo)為(x0,y0),則 解得或 因此所求圓的方程為 或. 點(diǎn)睛:確定圓的方程方法(1)直接法:根據(jù)圓的幾何性質(zhì),直接求出圓心坐標(biāo)和半徑,進(jìn)而寫出方程.(2)待定系數(shù)法 ①若已知條件與圓心和半徑有關(guān),則設(shè)圓的標(biāo)準(zhǔn)方程依據(jù)已知條件列出關(guān)于的方程組,從而求出的值;②若已知條件沒有明確給出圓心或半徑,則選擇圓的一般方程,依據(jù)已知條件列出關(guān)于D、E、F的方程組,進(jìn)而求出D、E、F的值. ,在三棱錐中,為的中點(diǎn).(1)證明:平面;(2)若點(diǎn)在棱上,且二面角為,求與平面所成角的正弦值. 【答案】(1)見解析(2)【解析】 【分析】(1)根據(jù)等腰三角形性質(zhì)得PO垂直AC,再通過計(jì)算,根據(jù)勾股定理得PO垂直O(jiān)B,最后根據(jù)線面垂直判定定理得結(jié)論。(2)根據(jù)條件建立空間直角坐標(biāo)系,設(shè)立各點(diǎn)坐標(biāo),根據(jù)方程組解出平面PAM一個(gè)法向量,利用向量數(shù)量積求出兩個(gè)法向量夾角,根據(jù)二面角與法向量夾角相等或互補(bǔ)關(guān)系列方程,解得M坐標(biāo),再利用向量數(shù)量積求得向量PC與平面PAM法向量夾角,最后根據(jù)線面角與向量夾角互余得結(jié)果.【詳解】(1)因?yàn)椋瑸榈闹悬c(diǎn),所以,所以為等腰直角三角形,且,..(2)如圖,以為坐標(biāo)原點(diǎn),的方向?yàn)檩S正方向,,可取,(舍去),.,.【點(diǎn)睛】利用法向量求解空間線面角的關(guān)鍵在于“四破”:第一,破“建系關(guān)”,構(gòu)建恰當(dāng)?shù)目臻g直角坐標(biāo)系;第二,破“求坐標(biāo)關(guān)”,準(zhǔn)確求解相關(guān)點(diǎn)的坐標(biāo);第三,破“求法向量關(guān)”,求出平面的法向量;第四,破“應(yīng)用公式關(guān)”..(1)若,證明:當(dāng)時(shí),;(2)若在只有一個(gè)零點(diǎn),求的值.【答案】(1)見解析;(2)【解析】 【詳解】分析:(1)先構(gòu)造函數(shù),再求導(dǎo)函數(shù),根據(jù)導(dǎo)函數(shù)不大于零得函數(shù)單調(diào)遞減,最后根據(jù)單調(diào)性證得不等式。(2)研究零點(diǎn),等價(jià)研究的零點(diǎn),先求導(dǎo)數(shù):,這里產(chǎn)生兩個(gè)討論點(diǎn),一個(gè)是a與零,一個(gè)是x與2,當(dāng)時(shí),沒有零點(diǎn);當(dāng)時(shí),先減后增,從而確定只有一個(gè)零點(diǎn)的必要條件,再利用零點(diǎn)存在定理確定條件的充分性,:(1)當(dāng)時(shí),等價(jià)于. 設(shè)函數(shù),則. 當(dāng)時(shí),所以在單調(diào)遞減. 而,故當(dāng)時(shí),即.(2)設(shè)函數(shù). 在只有一個(gè)零點(diǎn)當(dāng)且僅當(dāng)在只有一個(gè)零點(diǎn).(i)當(dāng)時(shí),沒有零點(diǎn);(ii)當(dāng)時(shí),. 當(dāng)時(shí),;當(dāng)時(shí),. 所以在單調(diào)遞減,在單調(diào)遞增. 故是在的最小值. ①若,即,在沒有零點(diǎn);②若,即,在只有一個(gè)零點(diǎn);③若,即,由于,所以在有一個(gè)零點(diǎn),由(1)知,當(dāng)時(shí),所以. 故在有一個(gè)零點(diǎn),因此在有兩個(gè)零點(diǎn). 綜上,在只有一個(gè)零點(diǎn)時(shí),. 點(diǎn)睛:利用函數(shù)零點(diǎn)的情況求參數(shù)值或取值范圍的方法(1)利用零點(diǎn)存在的判定定理構(gòu)建不等式求解.(2)分離參數(shù)后轉(zhuǎn)化為函數(shù)的值域(最值)問題求解.(3)轉(zhuǎn)化為兩熟悉函數(shù)圖象的上、下關(guān)系問題,從而構(gòu)建不等式求解.(二)選考題:共10分。請(qǐng)考生在第223題中任選一題作答。如果多做,則按所做的第一題計(jì)分。,曲線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為(為參數(shù)).(1)求和的直角坐標(biāo)方程;(2)若曲線截直線所得線段的中點(diǎn)坐標(biāo)為,求的斜率. 【答案】(1),當(dāng)時(shí),的直角坐標(biāo)方程為,當(dāng)時(shí),的直角坐標(biāo)方程為;(2)【解析】 【分析】 分析:(1)根據(jù)同角三角函數(shù)關(guān)系將曲線的參數(shù)方程化為直角坐標(biāo)方程,根據(jù)代入消元法將直線的參數(shù)方程化為直角坐標(biāo)方程,此時(shí)要注意分 與兩種情況.(2)將直線參數(shù)方程代入曲線的直角坐標(biāo)方程,根據(jù)參數(shù)幾何意義得之間關(guān)系,求得,即得的斜率. 【詳解】詳解:(1)曲線的直角坐標(biāo)方程為. 當(dāng)時(shí),的直角坐標(biāo)方程為,當(dāng)時(shí),的直角坐標(biāo)方程為.(2)將的參數(shù)方程代入的直角坐標(biāo)方程,整理得關(guān)于的方程 .① 因?yàn)榍€截直線所得線段的中點(diǎn)在內(nèi),所以①有兩個(gè)解,設(shè)為,則. 又由①得,故,于是直線的斜率. .(1)當(dāng)時(shí),求不等式的解集;(2)若恒成立,求的取值范圍.【答案】(1);(2).【解析】 【詳解】分析:(1)先根據(jù)絕對(duì)值幾何意義將不等式化為三個(gè)不等式組,分別求解,最后求并集,(2)先化簡不等式為,再根據(jù)絕對(duì)值三角不等式得最小值,最后解不等式得的取值范圍. 詳解:(1)當(dāng)時(shí),可得的解集為.(2)等價(jià)于. 而,且當(dāng)時(shí)等號(hào)成立.故等價(jià)于. 由可得或,所以的取值范圍是. 點(diǎn)睛:含絕對(duì)值不等式的解法有兩個(gè)基本方法,一是運(yùn)用零點(diǎn)分區(qū)間討論,二是利用絕對(duì)值的幾何意義求解.法一是運(yùn)用分類討論思想,法二是運(yùn)用數(shù)形結(jié)合思想,將絕對(duì)值不等式與函數(shù)以及不等式恒成立交匯、滲透,解題時(shí)強(qiáng)化函數(shù)、數(shù)形結(jié)合與轉(zhuǎn)化化歸思想方法的靈活應(yīng)用,這是命題的新動(dòng)向.
點(diǎn)擊復(fù)制文檔內(nèi)容
教學(xué)教案相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1