【導(dǎo)讀】時(shí),要特別注意根號(hào)前的符號(hào),選取依據(jù)是2?象限的三角函數(shù)的符號(hào)。證明,了解倍角、半角的正弦、余弦、正切公式的內(nèi)在聯(lián)系。
【總結(jié)】撰稿教師:李麗麗自學(xué)目標(biāo),并理解其幾何意義。2.理解和應(yīng)用向量數(shù)乘的運(yùn)算律。學(xué)習(xí)過(guò)程一、※課前準(zhǔn)備(預(yù)習(xí)教材86頁(yè)~87頁(yè),找出疑惑之處)二、※新課導(dǎo)學(xué)1.?dāng)?shù)乘定義:______________________是一個(gè)向量,記作a?,它的長(zhǎng)度與方向規(guī)定如下:(1)||a?=____
2024-11-18 16:44
【總結(jié)】3.2.1倍角公式(習(xí)題課)一。學(xué)習(xí)要點(diǎn):二倍角公式的應(yīng)用。二。學(xué)習(xí)過(guò)程:復(fù)習(xí)1.倍角公式:2.升冪公式:3.降冪公式:例1化簡(jiǎn)下列各式:1.???125sin12sin2.????40tan140tan23.2sin21575??1=例2已知
2024-11-19 03:40
【總結(jié)】三角函數(shù)的圖象與性質(zhì)(2)新授課學(xué)習(xí)目標(biāo)1、借助正弦函數(shù)的圖像,說(shuō)出正弦函數(shù)的性質(zhì);2、能利用正弦函數(shù)的性質(zhì)解決最值、奇偶性、單調(diào)性、周期性等有關(guān)問(wèn)題;
2024-11-27 23:47
【總結(jié)】§弧度制與角度制(課前預(yù)習(xí)案)班級(jí):___姓名:________編寫(xiě):一、新知導(dǎo)學(xué)1、長(zhǎng)度等于半徑長(zhǎng)的圓弧所對(duì)的圓心角叫做,這種以弧度為單位來(lái)度量角的制度叫做。2、在半徑為r的圓中,弧長(zhǎng)為l的弧所對(duì)圓心角為α,則。3、完成下列表格度數(shù)
2024-11-27 23:51
【總結(jié)】撰稿教師:李麗麗學(xué)習(xí)目標(biāo)1.了解平面向量基本定理,掌握平面向量基本定理及其應(yīng)用2.利用平面向量基本定理解決有關(guān)問(wèn)題學(xué)習(xí)過(guò)程一、課前準(zhǔn)備(預(yù)習(xí)教材96頁(yè)~98頁(yè),找出疑惑之處)二、新課導(dǎo)學(xué)1、平行向量基本定理2、平面內(nèi)任一向量是否可以用兩個(gè)不共線的向量來(lái)表示。如圖,設(shè)2
【總結(jié)】§角的概念的推廣(課前預(yù)習(xí)案)班級(jí):__姓名:__編寫(xiě):一、新知導(dǎo)學(xué):在平面內(nèi),角可以看做是一條射線繞著它的端點(diǎn)旋轉(zhuǎn)而成的圖形.旋轉(zhuǎn)起始時(shí)的射線叫做角的,終止時(shí)的射線叫做角的,射線的端點(diǎn)叫做角的.按逆時(shí)針?lè)较蛐D(zhuǎn)所得到的角為,而按順時(shí)針?lè)较蛐D(zhuǎn)所得到的角為
2024-11-18 16:46
【總結(jié)】2.1.4數(shù)乘向量一.學(xué)習(xí)要點(diǎn):數(shù)乘向量、向量共線和三點(diǎn)共線的判斷。二.學(xué)習(xí)過(guò)程:一、復(fù)習(xí)引入:1、向量的加法:2、向量的減法:二、講解新課:1、實(shí)數(shù)與向量的積引例1:已知非零向量a,作出aaa??和)()(aa???。探究:相同向量相加后,和的長(zhǎng)度與方向有什么變化?定義:實(shí)數(shù)λ與向量a的積是
2024-11-27 23:46
【總結(jié)】2.1.1向量的概念一.學(xué)習(xí)要點(diǎn):向量的有關(guān)概念二.學(xué)習(xí)過(guò)程:一、復(fù)習(xí):在現(xiàn)實(shí)生活中,我們會(huì)遇到很多量,其中一些量在取定單位后用一個(gè)實(shí)數(shù)就可以表示出來(lái),如長(zhǎng)度、質(zhì)量等.還有一些量,如我們?cè)谖锢碇兴鶎W(xué)習(xí)的位移,是一個(gè)既有大小又有方向的量,這種量就是我們本章所要研究的向量.二、新課學(xué)習(xí)::
【總結(jié)】一、選擇題1.下列各式與tanα相等的是()A.1-cos2α1+cos2αB.sinα1+cosαC.sinα1-cos2α-cos2αsin2α【解析】1-cos2αsin2α=2sin2α2sinαcosα=sinαcosα=tanα.【答
2024-11-27 23:35
【總結(jié)】2.1.3向量的減法一.學(xué)習(xí)要點(diǎn):向量的減法二.學(xué)習(xí)過(guò)程:一、復(fù)習(xí):向量加法的法則:二、新課學(xué)習(xí):1.用“相反向量”定義向量的減法(1)“相反向量”的定義:(2)規(guī)定:零向量的相反向量仍是零向量.?(?a)
【總結(jié)】弧度制(1)學(xué)習(xí)要點(diǎn):弧度制以及角度制與之換算關(guān)系。學(xué)習(xí)過(guò)程:(一)復(fù)習(xí):度量角的大小第一種單位制—角度制的定義。(二)新課學(xué)習(xí):1.1弧度角的定義:長(zhǎng)度等于的弧所對(duì)的圓心角稱(chēng)為的角。如圖:?AOB=1rad
【總結(jié)】函數(shù)模型的應(yīng)用實(shí)例班級(jí):__________姓名:__________設(shè)計(jì)人__________日期__________課前預(yù)習(xí)·預(yù)習(xí)案【溫馨寄語(yǔ)】有人說(shuō):“人人都可以成為自己的幸運(yùn)的建筑師?!痹改銈?cè)谇靶械牡缆飞希米约旱碾p手建造幸運(yùn)的大廈【學(xué)習(xí)目標(biāo)】1.結(jié)合實(shí)例體會(huì)直線上升、指數(shù)爆炸、對(duì)數(shù)增長(zhǎng)等不同增
2024-11-19 15:21
【總結(jié)】§向量在幾何中的應(yīng)用(課前預(yù)習(xí)案)班級(jí):___姓名:________編寫(xiě):一、新知導(dǎo)學(xué)1.兩個(gè)向量的數(shù)量積:2.平面兩向量數(shù)量積的坐標(biāo)表示:3.向量平
2024-11-19 06:26
【總結(jié)】余弦函數(shù)圖像和性質(zhì)(1)學(xué)案(3)月()日編者:高小燕審稿人:全組人員星期授課類(lèi)型:新授學(xué)習(xí)目標(biāo),牢記余弦函數(shù)的五個(gè)關(guān)鍵點(diǎn),用五點(diǎn)法熟練作余弦函數(shù)的簡(jiǎn)圖。,并用集合符號(hào)來(lái)表示;、余弦函數(shù)的圖象之間的關(guān)系,能說(shuō)出函數(shù)co
【總結(jié)】§三角函數(shù)的誘導(dǎo)公式(2)(課前預(yù)習(xí)案)班級(jí):___姓名:________編寫(xiě):一、新知導(dǎo)學(xué)2???的誘導(dǎo)公式公式四cos()2???=sin()2???=tan()2???=2.α與2????
2024-11-27 23:50