【導讀】由研究正、余弦函數(shù)的圖像和性質(zhì)的方法引出正切函數(shù)的圖像和性質(zhì)。利用單位圓中的正切線來繪制tanyx?是,其圖像關于對稱,它的對稱中心坐標。是,對稱軸方程是;是否完成了化簡?xy的定義域、值域,并求出它的周期、對稱性、單調(diào)。的單調(diào)遞增區(qū)間是.
【總結】雙基達標?限時20分鐘?1.函數(shù)y=-sinx,x∈??????-π2,3π2的簡圖是().解析由y=sinx與y=-sinx的圖象關于x軸對稱可知選D.答案D2.在[0,2π]內(nèi),不等式sinx-32的解集是().A.(0,
2024-11-27 23:47
【總結】雙基達標?限時20分鐘?1.函數(shù)y=3sin??????2x+π6的圖象的一條對稱軸方程是().A.x=0B.x=2π3C.x=-π6D.x=π3解析令sin??????2x+π6=±1,得2x+π6=kπ+π2(k∈Z),即x=k2π
2024-11-28 01:12
【總結】三角函數(shù)的圖象與性質(zhì)(2)新授課學習目標1、借助正弦函數(shù)的圖像,說出正弦函數(shù)的性質(zhì);2、能利用正弦函數(shù)的性質(zhì)解決最值、奇偶性、單調(diào)性、周期性等有關問題;
【總結】一、自學目標:1、理解半角公式的推導過程2、會運用半角公式進行相關的運算。二、自學過程:C2α中令得cosα=2cos22?-1=1-2sin22?,將公式變形可得2?C=;2?S=。2.2?T的推導方法是2?S與2?C兩
2024-11-27 23:35
【總結】《余弦函數(shù)的圖象和性質(zhì)》教學設計一、教材分析本節(jié)選自人教B版普通高中課程標準實驗教科書必修四第一章第三單元第二節(jié)。本節(jié)余弦函數(shù)圖像可根據(jù)誘導公式cossin()2xx???,通過對正弦函數(shù)圖象的平移得到。因此,余弦函數(shù)的圖象和性質(zhì)既是正弦函數(shù)圖象和性質(zhì)的轉(zhuǎn)化與鞏固,又是余弦型函數(shù)的基礎。因此,學好這節(jié)課不僅可以為我們今后學習正切、余切函
【總結】第一章第2課時一、選擇題1.與函數(shù)y=tan????2x+π4的圖象不相交的一條直線是()A.x=π2B.y=π2C.x=π8D.y=π8[答案]C[解析]由正切函數(shù)圖象知2x+π4≠kπ+π2,k∈Z,∴x≠kπ2+π8,k∈Z,故符合題意只有C選項
【總結】第一章第1課時一、選擇題1.函數(shù)y=sinax(a≠0)的最小正周期為π,則a的值為()A.2B.-2C.±2D.12[答案]C[解析]由題意,得2π|a|=π,∴a=±2.2.用五點法作y=2sin2x的圖象時,首先應描出的五點的橫坐標
【總結】余弦函數(shù)圖像和性質(zhì)(1)學案(3)月()日編者:高小燕審稿人:全組人員星期授課類型:新授學習目標,牢記余弦函數(shù)的五個關鍵點,用五點法熟練作余弦函數(shù)的簡圖。,并用集合符號來表示;、余弦函數(shù)的圖象之間的關系,能說出函數(shù)co
2024-11-18 16:44
【總結】余弦函數(shù)圖像和性質(zhì)(二)(3)月()日編者:高小燕審稿人:全組人員星期授課類型:新授學習目標根據(jù)余弦函數(shù)圖象的特征,結合正弦函數(shù)的性質(zhì)學習余弦函數(shù)的性質(zhì):單調(diào)性、奇偶性、對稱性和周期性等。課堂內(nèi)容展示自學指導:余弦函數(shù)xycos?
【總結】§兩角和與差的正切(課前預習案)班級:___姓名:________編寫:一、新知導學1.??tan????,??tan????。注意:1?必須在定義域范圍內(nèi)使用上述公式,tan?,tan?,tan(?
2024-11-18 16:43
【總結】1.正切函數(shù)的性質(zhì)與圖象1.理解正切函數(shù)的性質(zhì),掌握正切函數(shù)的圖象的作法.2.能利用正切函數(shù)的圖象與性質(zhì)解決與正切函數(shù)有關的基本問題.基礎梳理一、正切函數(shù)的性質(zhì)1.正切函數(shù)的定義域和值域:定義域為??????x???x≠kπ+π2,k∈Z,值域為R.2.正切函數(shù)的周期性:y
2024-11-19 17:41
【總結】撰稿教師:李麗麗自學目標1.理解向量的概念,掌握向量的二要素(長度、方向);2.能正確地表示向量,初步學會求向量的模長;3.注意向量的特點:可以平行移動學習重、難點:1.向量、相等向量、共線向量的概念;2.向量的幾何表示學習過程一、課前準備(預習教材77頁~79頁,找出疑惑之處)二、新課導學(一)問題探
【總結】§向量的加法(課前預習案)班級:___姓名:________編寫:一、新知導學a,b在平面上任取一點A,作AB=,BC=,再作向量AC,則向量叫做a與b的和(或),記作,即a+b=AB+B
2024-11-27 23:46
【總結】學習目標1、掌握向量的加法運算,并理解其幾何意義;2、會用向量加法的三角形法則和平行四邊形法則作兩個向量的和向量,培養(yǎng)數(shù)形結合解決問題的能力;一、※課前準備(預習教材80頁~83頁,找出疑惑之處)二、※新課導學:1,回答以下問題(1)某
【總結】§向量的概念(課前預習案)班級:___姓名:________編寫:一、新知導學1、我們把具有____和_____的量稱為向量。2、具有線段叫做,以A為始點,B為終點的有向線段記作_____,其長度(或模)記為__,長度為零的向量叫做_____,記作__,長度為1的向量叫做______3、向量可