【導(dǎo)讀】定點F1、F2叫做橢圓。兩焦點之間的距離叫。根據(jù)已知條件,求出表示平面曲線的。通過方程,研究平面曲線的性質(zhì)。中,令x=0,得y=?軸長和短半軸長。2)e越接近0,c就越接近0,從而b就越大(?橢圓有幾個頂點?對稱軸與長軸、短軸是什么關(guān)系?2a和2b是什么量?關(guān)于離心率講了幾點?長軸長等于20,離心率等于.關(guān)于x軸,y軸,原點對稱。
【總結(jié)】江蘇省漣水縣第一中學(xué)高中數(shù)學(xué)橢圓的幾何性質(zhì)(2)教學(xué)案蘇教版選修1-1教學(xué)目標(biāo):1.進一步熟悉橢圓的基本幾何性質(zhì):范圍、對稱性、頂點、長軸、短軸,研究并理解橢圓的離心率的概念.來2.掌握橢圓標(biāo)準(zhǔn)方程中a,b,c,e的幾何意義及相互關(guān)系.教學(xué)重點:橢圓的幾何性質(zhì)——范圍、對稱性、頂點、離心率.教學(xué)難點:
2024-11-20 00:31
【總結(jié)】2020/12/24導(dǎo)數(shù)第一章2020/12/24??????...:,.?高度是多少距水面的最大他度速如何求他在某時刻的示表可用函數(shù)單位度運動員相對于水面的高后已知起跳賽的瞬間照片中鎖定了運動員比你看過高臺跳水比賽嗎10569412????ttthmhs2020/12/24
2024-11-17 11:59
【總結(jié)】2020/12/24導(dǎo)數(shù)的幾何意義311..2020/12/24?????????,.,,''的幾何意義是什么呢導(dǎo)數(shù)么那附近的變化情況在數(shù)反映了函處的瞬時變化率在表示函數(shù)導(dǎo)數(shù)我們知道0000xfxxxfxxxfxf??2020/12/24P1P2P
【總結(jié)】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》選修1-1《雙曲線的簡單幾何性質(zhì)》教學(xué)目標(biāo)?知識與技能目標(biāo)?了解平面解析幾何研究的主要問題:(1)根據(jù)條件,求出表示曲線的方程;(2)通過方程,研究曲線的性質(zhì).理解雙曲線的范圍、對稱性及對稱軸,對稱中心、離心率、頂點、漸近線的概念;掌握雙曲線的標(biāo)準(zhǔn)方程、會用雙曲線的定義解決實際
2024-11-30 12:26
【總結(jié)】復(fù)習(xí)::到兩定點F1、F2的距離之和為常數(shù)(大于|F1F2|)的動點的軌跡叫做橢圓。:a,b,c的關(guān)系是:a2=b2+c2|)|2(2||||2121FFaaPFPF???當(dāng)焦點在X軸上時當(dāng)焦點在Y軸上時)0(12222????babyax)0(12222????
2024-11-18 01:22
【總結(jié)】江蘇省漣水縣第一中學(xué)高中數(shù)學(xué)橢圓的幾何性質(zhì)(1)教學(xué)案蘇教版選修1-1教學(xué)目標(biāo):1.掌握橢圓的基本幾何性質(zhì):范圍、對稱性、頂點、長軸、短軸.2.感受如何運用方程研究曲線的幾何性質(zhì).教學(xué)重點:橢圓的幾何性質(zhì)——范圍、對稱性、頂點.教學(xué)難點:橢圓幾何性質(zhì)的研究過程,即如何運用橢圓標(biāo)準(zhǔn)方程研究橢圓的幾何性質(zhì).教學(xué)過程:
2024-12-04 18:02
【總結(jié)】2020/12/242020/12/24???,??th,.,at,,規(guī)律導(dǎo)數(shù)的符號有什么變化地相應(yīng)特點此點附近的圖象有什么是多少呢在此點的導(dǎo)數(shù)函數(shù)那么距水面的高度最大高臺跳水運動員時我們發(fā)現(xiàn)觀察圖?thOa?圖??0th'?單調(diào)遞增??0th'?單調(diào)遞減??0ah'?
2024-11-17 05:49
【總結(jié)】幾種常見函數(shù)的導(dǎo)數(shù)一、復(fù)習(xí),過曲線某點的切線的斜率的精確描述與求值;物理學(xué)中,物體運動過程中,在某時刻的瞬時速度的精確描述與求值等,都是極限思想得到本質(zhì)相同的數(shù)學(xué)表達(dá)式,將它們抽象歸納為一個統(tǒng)一的概念和公式——導(dǎo)數(shù),導(dǎo)數(shù)源于實踐,又服務(wù)于實踐.:(1)()
2024-11-18 12:15
【總結(jié)】《雙曲線及其標(biāo)準(zhǔn)方程》教學(xué)目標(biāo)?知識與技能目標(biāo)?理解雙曲線的概念,掌握雙曲線的定義、會用雙曲線的定義解決實際問題;理解雙曲線標(biāo)準(zhǔn)方程的推導(dǎo)過程及化簡無理方程的常用的方法;了解借助信息技術(shù)探究動點軌跡的《幾何畫板》的制作或操作方法。?過程與方法目標(biāo)?(1)預(yù)習(xí)與引入過程?預(yù)習(xí)教科書有關(guān)內(nèi)容,思考當(dāng)變化的平
2024-11-19 16:29
【總結(jié)】雙曲線的性質(zhì)(一)222bac??定義圖象方程焦點的關(guān)系||MF1|-|MF2||=2a(02a|F1F2|)F(±c,0)F(0,±c)12222??byax12
2024-11-18 08:47
【總結(jié)】江蘇省建陵高級中學(xué)2020-2020學(xué)年高中數(shù)學(xué)橢圓的幾何性質(zhì)(1)導(dǎo)學(xué)案(無答案)蘇教版選修1-1【學(xué)習(xí)目標(biāo)】;。【課前預(yù)習(xí)】221625400xy??表示什么樣的曲線,你能利用以前學(xué)過的知識畫出它的圖形嗎?,橢圓標(biāo)準(zhǔn)方程221(0)xyabab????有什么特點31頁至第33頁,回答
【總結(jié)】【課堂新坐標(biāo)】(教師用書)2021-2021學(xué)年高中數(shù)學(xué)橢圓的幾何性質(zhì)課后知能檢測蘇教版選修1-1一、填空題1.x2+2y2=2的上頂點坐標(biāo)是________.【解析】將方程x2+2y2=2化為:x22+y2=1,∴a2=2,b2=1,∴b=1.∴上頂點坐標(biāo)為(0,1).
【總結(jié)】2020/12/252020/12/25?分的創(chuàng)立導(dǎo)致了微積期的研究數(shù)量的變化規(guī)律進行長我們可以對通過研究函數(shù)這些性質(zhì)常重要的或最小值等性質(zhì)是非與慢以及函數(shù)的最大值減的快了解函數(shù)的增與減、增研究函數(shù)時型化規(guī)律的重要數(shù)學(xué)模函數(shù)是描述客觀世界變,,.,..,,數(shù)中的作用可以體會導(dǎo)數(shù)在研究函從中你的性質(zhì)我們運用導(dǎo)數(shù)研究函數(shù)下面2020
2024-11-18 12:09
【總結(jié)】標(biāo)準(zhǔn)方程生活中存在著各種形式的物體都是利用了拋物線的原理我們學(xué)習(xí)過的二次函數(shù)的圖象就是拋物線我們對拋物線雖然熟悉,但你知道它是滿足什么條件的動點的軌跡嗎?思考:xyox=y=x2-x+1y=x2-xy=x211B案第1題:l
【總結(jié)】導(dǎo)數(shù)的應(yīng)用知識與技能:1.利用導(dǎo)數(shù)研究函數(shù)的切線、單調(diào)性、極大(小)值以及函數(shù)在連續(xù)區(qū)間[a,b]上的最大(小)值;2.利用導(dǎo)數(shù)求解一些實際問題的最大值和最小值。過程與方法:1.通過研究函數(shù)的切線、單調(diào)性、極大(?。┲狄约昂瘮?shù)在連續(xù)區(qū)間[a,b]上的最大(?。┲担?/span>