【導讀】怎樣判斷一個復數(shù)是實數(shù)?你能發(fā)現(xiàn)規(guī)律嗎?
【總結】《復數(shù)代數(shù)形式的的四則運算-復數(shù)的加法與減法》教學目標?掌握復數(shù)的加法與減法的運算及幾何意義?教學重點:?掌握復數(shù)的加法與減法的運算及幾何意義鞏固練習復數(shù)的運算法則復數(shù)加減運算的幾何意義問題引入作業(yè):自由安排復數(shù)的四則運算(一)我們知道實數(shù)有加、減、乘等運算,且有
2024-11-18 12:13
【總結】復數(shù)的四則運算⑵一、復習鞏固::(1)運算法則:設復數(shù)z1=a+bi,z2=c+di,那么:z1+z2=(a+c)+(b+d)i;z1-z2=(a-c)+(b-d)i.(2)復數(shù)的加法滿足交換律、結合律,即對任何z1,z2,z3∈C,有:z1+z2=z2+z1,(z1+z2)+z3=z1+(z
2024-11-19 13:09
【總結】復數(shù)的四則運算:復數(shù)z1=a+bi,z2=c+di,(a,b,c,d是實數(shù))z1+z2=(a+c)+(b+d)i;z1-z2=(a-c)+(b-d)i.即:兩個復數(shù)相加
2024-11-10 01:36
【總結】第四章§2理解教材新知把握熱點考向應用創(chuàng)新演練考點一考點二考點三知識點一知識點二知識點三知識點四已知復數(shù)z1=a+bi,z2=c+di(a,b,c,d∈R).問題1:多項式的加減實質是合并同類項
2024-11-17 19:02
【總結】復數(shù)z=a+bi直角坐標系中的點Z(a,b)xyobaZ(a,b)建立了平面直角坐標系來表示復數(shù)的平面x軸------實軸y軸------虛軸(數(shù))(形)------復數(shù)平面(簡稱復平面)一一對應z=a+bi復數(shù)的幾何意義(一)
2024-11-18 08:47
【總結】2021年1月6日星期W蘇教高中數(shù)學選修2-2教學目標:(1)理解復數(shù)代數(shù)形式的四則運算法則;(2)能運用運算律進行復數(shù)的四則運算;練習:(1+i)2=___;(1-i)2=___;____;11____;11??????iiii.______)
2024-11-30 11:22
【總結】.,,.,算問題一步討論復數(shù)系中的運進照那里的分析我們按下面數(shù)系復我們把實數(shù)系擴充到了在上一節(jié)其幾何意義加減運算及代數(shù)形式的:,復數(shù)的加法法則如下我們規(guī)定????????idbcadicbia,dicz,biaz21???????????那么是任意兩個復數(shù)設.,個確定的復數(shù)兩個復數(shù)的和仍然是一很明顯?
2025-07-22 23:03
【總結】復數(shù)單元檢測題一、選擇題????22132ixxx????是純虛數(shù),則實數(shù)x的值是B.1?C.1?D.以上都不對??2ii,iabab????R,其中i為虛數(shù)單位,則??baA.1?B.1
2024-11-15 21:17
【總結】復數(shù)的四則運算我們引入這樣一個數(shù)i,把i叫做虛數(shù)單位,并且規(guī)定:i2??1;形如a+bi(a,b∈R)的數(shù)叫做復數(shù).全體復數(shù)所形成的集合叫做復數(shù)集,一般用字母C表示.復習:實部復數(shù)的代數(shù)形式:通常用字母z表示,即biaz??),(RbRa??虛部其中
2025-07-18 19:36
【總結】本課時欄目開關填一填研一研練一練【學習要求】1.理解復數(shù)代數(shù)形式的四則運算法則.2.能運用運算法則進行復數(shù)的四則運算.【學法指導】復數(shù)的加減法和乘法運算可類比多項式的運算,不必專門記憶公式;復數(shù)除法的關鍵是“分母實數(shù)化”.本課時欄目開關填一填
2024-11-17 23:14
【總結】高中新課標數(shù)學選修(2-2)~教材解讀一、數(shù)系的擴充和復數(shù)的概念1.復數(shù)的引入:回想數(shù)系的每一次擴充都主要來自兩個方面:一方面數(shù)學本身發(fā)展的需要;另一方面由于實際的需要.而復數(shù)的引入屬于前者.我們知道,方程210x??在實數(shù)范圍內無解,于是需引入新數(shù)i使方程有解,顯然,需要21i??.數(shù)系的擴充過程:自
2024-12-02 10:15
【總結】【成才之路】2021-2021學年高中數(shù)學第5章2復數(shù)的四則運算課時作業(yè)北師大版選修2-2一、選擇題1.(2021·新課標Ⅰ,1)設復數(shù)z滿足1+z1-z=i,則|z|=()A.1B.2C.3D.2[答案]A[解析]由1+z1-z=i得,
2024-12-05 06:26
【總結】§復數(shù)的四則運算一、基礎過關1.如果一個復數(shù)與它的模的和為5+3i,那么這個復數(shù)是__________.2.(1-2i)-(2-3i)+(3-4i)-…-(2008-2009i)+(2009-2010i)-(2010-2011)i+(2011-2012i)=______________.
2024-12-08 05:55
【總結】復數(shù)的幾何意義【課標要求】1.理解復平面及相關概念和復數(shù)與復平面內的點、向量的對應關系.2.掌握復數(shù)加減法的幾何意義及應用.3.掌握復數(shù)模的概念及幾何意義.【核心掃描】1.復數(shù)的模、復數(shù)的幾何意義.(重點)2.模及復數(shù)幾何意義的應用.(難點)自學導引1.復平面
2024-11-18 08:56
【總結】為常數(shù))????(x)x)(2(1'??1)a0,lna(aa)a)(3(x'x???且1)a,0a(xlna1)xlog)(4('a???且sinx(8)(cosx)'??e)e)(5(x'x?x1(6)(lnx)'
2024-11-18 08:46