【導讀】昨天的懈怠,造成今天的被動,準確說出一元二次方程各項的系數;當我們把一個正方體表面刷滿油漆時,恰好用掉油。漆2400克,那么,這個正方體的棱長是多少呢?,是關于未知字母的幾項式?,未知數的次數最高是幾?是2的方程叫一元二次方程.要滿足哪幾個條件?出它們的各項系數和常數項。為何值時,它是一元一
【總結】一.復習?我們學過那些方程???學習目標,根據一元二次方程的一般式,確定各項系數解決有關問題解的概念,并能解決相關問題.有一塊長100cm,寬50cm的鐵皮,在它的四周各減去一個同樣大的正方形,然后制作成一個無蓋的地面積為3600cm
2024-12-08 09:52
【總結】華東師范大學出版社華東師范大學出版社數學九年級(上)一元二次方程的解法復習回顧只含有一個未知數,并且未知數的最高次數是2,這樣的方程叫做一元二次方程.通??蓪懗扇缦碌囊话阈问剑篴x2+bx+c=0(a≠0)一元一次方程的解法:直接開平方法因式分解法其中a、b、c分別叫做二次項系數、一次項
2025-08-04 09:47
【總結】如果設這個花壇的寬為x米,則長為米,根據題意列方程:.xx+1問題一:林城新農村要建造一個面積為20平方米,長比寬多1米的長方形花壇,問它的寬是多少?(x+1)x(x+1)=20
2024-11-27 23:40
【總結】一元二次方程的應用(1)(1)某公司今年的銷售收入是a萬元,如果每年的增長率都是x,那么一年后的銷售收入將達到______萬元(用代數式表示)(2)某公司今年的銷售收入是a萬元,如果每年的增長率都是x,那么兩年后的銷售收入將達到______萬元(用代數式表示)x)(1a??2x)(1a??x)(1a??
2024-12-08 10:11
【總結】2、在分析、揭示實際問題的數量關系并把實際問題轉化為數學模型(一元二次方程)的過程中使學生感受方程是刻畫現實世界數量關系的工具,增加對一元二次方程的感性認識。3、會用試驗的方法估計一元二次方程的解。1、知道一元二次方程的定義,能熟練地把一元二次方程整理成一般形式ax2+bx+c=o(a≠0)
2024-12-08 01:58
【總結】一元二次方程開平方法和配方法(a=1)解法的區(qū)別與聯系.開平方法:形如x2=b(b≥0);(x-a)2=b(b≥0)。配方法:①先把方程x2+bx+c=0移項得x2+bx=-c.02???cbxxx2+bx+=-c+b2()2b2()2即:(x+
2024-12-08 09:05
【總結】初中數學九年級上冊(蘇科版)一元二次方程應用3一、列方程解應用題的一般步驟是:?:審清題意:已知什么,求什么?已知,未知之間有什么關系;?:設未知數,語句要完整,有單位的要注明單位;?:列代數式,根據等量關系式列方程;?:解所列的方程;?:是否是所列方程的解;是否符合題意;?:答案也
2025-10-10 08:19
【總結】第1課時一元二次方程問題情境一:1、你還記得什么叫做方程嗎?2、什么是一元一次方程?它的一般形式是怎樣的?創(chuàng)設情境引入新課問題情境二:1、如圖,有一塊矩形鐵皮,長100cm,寬50cm,在它的四個角分別切去一個正方形,然后將四周突出的部分折起,就能制
2024-11-21 21:32
【總結】(1)用配方法解一元二次方程?解下列方程:①9x2=9②(x+5)2=9③16x2-13=3④(3x+2)2-49=0⑤2(3x+2)2=2⑥81(2x-5)2-16=0?知識準備?x1=1,x2=-1?x1=-2,x2=-8?x
2024-11-17 18:23
【總結】◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三階)◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三階)◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三階)◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三階
2025-06-14 04:12
2024-11-21 01:22
【總結】第二章第二課時:一元二次方程Wjl321制作.一元二次方程及其解法(1)一般形式:ax2+bx+c=0(a≠0).(2)一元二次方程的四種解法:①直接開平方法:形如x2=k(k≥0)的形式均可用此法求解.②配方法:要先化二次項系數為1,然后方程兩邊同加上一次項系數的一半的平方,配成左邊是完全平
2024-11-06 18:38
【總結】一、列方程解應用題的一般步驟是::審清題意:已知什么,求什么?已,未知之間有什么關系;:設未知數,語句要完整,有單位的要注明單位;:列代數式,列方程;:解所列的方程;:是否是所列方程的解;是否符合題意;:答案也必需是完整的語句,注明單位.二、列方程解應用題的關鍵是:找出相等關系.回顧舊
2024-11-18 19:22
【總結】一元二次方程?學習目標:1.理解一元二次方程的概念;2.掌握一元二次方程的一般形式,正確認識二次項系數、一次項系數及常數項.?學習重點:一元二次方程的概念.1.創(chuàng)設情境,導入新知思考以下問題如何解決:1.要設計一座高2m的人體雕像,使它的上部(腰以上)與下部(腰以下)的高度比,等于下
2024-11-22 00:49
【總結】(第二課時)1、自學P272、什么叫方程的解?3、一元二次方程的根的情況與一元一次方程有什么不同嗎?自學檢測1、下面哪些數是方程x2-x-6=0的根?-4-3-2-1012342、你能寫出方程x2-x=
2024-11-21 00:05