【總結(jié)】第7章電路的拉普拉斯變換分析法拉普拉斯變換的定義拉普拉斯變換的基本性質(zhì)拉普拉斯反變換復(fù)頻域電路電路的拉普拉斯變換分析法拉普拉斯變換的定義?拉普拉斯變換(簡稱拉氏變換)是求解常系數(shù)線性微分方程的工具。設(shè)一個變量t的函數(shù)f(t),在任意區(qū)間能夠滿足狄利赫利條件(一般電子技術(shù)
2025-08-05 10:03
【總結(jié)】1=L—1[]§拉氏逆變換()Fs已知()ft的拉氏變換或者象函數(shù)為()ft求()Fs的拉氏逆變換或者象原函數(shù)()Fs=L[]()ft方法一記住幾個常用的拉氏變換L[]11s?L[]kks?L[]taeL[]at
2025-08-01 17:45
【總結(jié)】復(fù)變函數(shù)與積分變換ComplexAnalysisandIntegralTransform復(fù)變函數(shù)與積分變換Laplace變換的應(yīng)用對一個系統(tǒng)進(jìn)行分析和研究,首先要知道該系統(tǒng)的數(shù)學(xué)模型,也就是要建立該系統(tǒng)特性的數(shù)學(xué)表達(dá)式.所謂線性系統(tǒng),在許多場合,它的數(shù)學(xué)模型可以用一個線性微分方程來描述,或者說是滿足疊加原理的一類
2025-08-20 01:30
【總結(jié)】復(fù)變函數(shù)與積分變換ComplexAnalysisandIntegralTransform復(fù)變函數(shù)與積分變換本講介紹拉氏變換的基本性質(zhì),它們在拉氏變換的實際應(yīng)用中都是很有用的.為方便起見,假定在這些性質(zhì)中,凡是要求拉氏變換的函數(shù)都滿足拉氏變換存在定理的條件,并且把這些函數(shù)的增長指數(shù)都統(tǒng)一地取為c,在證明性質(zhì)時不再重述這些條
2025-07-31 08:54
【總結(jié)】第九章拉普拉斯變換TheLaplaceTransform?掌握拉氏變換定義及其基本性質(zhì);?牢記常用典型信號的拉氏變換;?掌握運用拉氏變換分析LTI系統(tǒng)的方法;?掌握系統(tǒng)的典型表示方法:H(s)、h(t)、微分方程、模擬框圖、信號流圖、零極點+收斂域圖,以及它們之間的轉(zhuǎn)換。?掌握采用單邊拉氏變換對初始狀態(tài)非零系統(tǒng)的分析方
2025-08-11 12:05
【總結(jié)】第八章拉普拉斯變換拉普拉斯變換理論(又稱為運算微積分,或稱為算子微積分)是在19世紀(jì)末發(fā)展起來的.首先是英國工程師亥維賽德()發(fā)明了用運算法解決當(dāng)時電工計算中出現(xiàn)的一些問題,但是缺乏嚴(yán)密的數(shù)學(xué)論證.后來由法國數(shù)學(xué)家拉普拉斯()給出了嚴(yán)密的數(shù)學(xué)定義,稱之為拉普拉斯變換方法.拉普拉斯(Laplace)變
2025-07-20 22:39
【總結(jié)】第1頁123,,npppp§拉普拉斯逆變換第2頁由象函數(shù)求原函數(shù)(即求拉普拉斯反變換)的方法:部分分式展開法F(s)通常為s的有理分式,一般形式為()()()AsFsBs?零點:極點:123,,mzzzz123,,npppp1
2025-01-20 06:12
【總結(jié)】復(fù)變函數(shù)與積分變換ComplexAnalysisandIntegralTransform復(fù)變函數(shù)與積分變換Laplace逆變換前面主要討論了由已知函數(shù)f(t)求它的象函數(shù)F(s),但在實際應(yīng)用中常會碰到與此相反的問題,即已知象函數(shù)F(s)求它的象原函數(shù)f(t).由拉氏變換的概念可知,函數(shù)f(t)的拉氏
2025-08-20 01:29
【總結(jié)】利用變換可簡化運算,比如對數(shù)變換,極坐標(biāo)變換等。類似的,變換也存在于工程,技術(shù)領(lǐng)域,它就是積分變換。積分變換的使用,可以使求解微分方程的過程得到簡化,比如乘積可以轉(zhuǎn)化為卷積。什么是積分變換呢?即為利用含參變量積分,把一個屬于A函數(shù)類的函數(shù)轉(zhuǎn)化屬于B函數(shù)類的一個函數(shù)。傅里葉變換和拉普拉斯變換是兩種重要積分變換。傅里葉變換能夠分析信號的成分,可以當(dāng)做信號的成分的波形有很多,例如鋸傅立葉變
2025-06-26 16:09
【總結(jié)】1第九章拉普拉斯變換§Laplace變換的應(yīng)用及綜合舉例§Laplace變換的應(yīng)用及綜合舉例三、利用Matlab實現(xiàn)Laplace變換一、求解常微分方程(組)二、綜合舉例*2第九章
2025-01-19 14:37
【總結(jié)】第四章拉普拉斯變換本章要點拉氏變換的定義——從傅立葉變換到拉氏變換拉氏變換的性質(zhì),收斂域連續(xù)時間系統(tǒng)響應(yīng)的求解(S域)系統(tǒng)函數(shù)和單位沖激響應(yīng)系統(tǒng)的零極點§拉氏變換的定義主要內(nèi)容重點難點定義的引出拉氏正變換的推導(dǎo)拉氏反變換的推導(dǎo)拉氏變換的物理意義
2025-02-17 10:50
【總結(jié)】 傅里葉變換與拉普拉斯變換區(qū)別演講稿 嶺南師范學(xué)院新材料研究院傅里葉變換紅外光譜儀樣品測試申請登記表送樣日期:年月日送樣單位送樣人名稱地址聯(lián)系電話研究課題名稱電子郵件□國家及省部基金課題課題類型□...
2024-09-28 16:45
【總結(jié)】傅里葉變換在物理學(xué)、數(shù)論、組合數(shù)學(xué)、信號處理、概率論、統(tǒng)計學(xué)、密碼學(xué)、聲學(xué)、光學(xué)、海洋學(xué)、結(jié)構(gòu)動力學(xué)等領(lǐng)域都有著廣泛的應(yīng)用(例如在信號處理中,傅里葉變換的典型用途是將信號分解成幅值分量和頻率分量)。傅里葉變換能將滿足一定條件的某個函數(shù)表示成三角函數(shù)(正弦和/或余弦函數(shù))或者它們的積分的線性組合。在不同的研究領(lǐng)域,傅里葉變換具有多種不同的變體形式,如連續(xù)傅里葉變換和離散傅里葉變換。傅里
2025-04-04 02:06
【總結(jié)】13-1拉普拉斯變換的定義第13章拉普拉斯變換13-2拉普拉斯變換的性質(zhì)13-3拉普拉斯反變換13-4運算電路13-5應(yīng)用拉普拉斯變換分析電路§13-1拉普拉斯變換的定義對于一階電路、二階電路,根據(jù)基爾霍夫定律和元件的VCR列出微分方程,根據(jù)換路后動態(tài)元件
2025-01-19 15:37
【總結(jié)】2022/1/41目錄?第二章解析函數(shù)?第三章復(fù)變函數(shù)的積分?第四章解析函數(shù)的級數(shù)表示?第五章留數(shù)及其應(yīng)用?第六章傅立葉變換?第七章拉普拉斯變換?第一章復(fù)數(shù)與復(fù)變函數(shù)2022/1/42第七章
2024-12-29 12:29