【導讀】間變化的函數(shù)h=++10的圖象。解:我們用曲線h在t0,t1,t2處的切線,于x軸.所以,在t=t0附近曲線比較平坦,h′<0.所以,在t=t1附近曲線下降,即函數(shù)h在t=t2附近也單調(diào)遞減.率,就是藥物濃度f在此時刻的導數(shù)。斜率為-1,傾斜角為135°此類題有更簡單的解法.處的導數(shù)在是求函數(shù)00)()(xxxfyxf???如果將x0改為x,則求得的是)(xfy??
【總結(jié)】幾何意義1高二數(shù)學選修1-1第三章導數(shù)及其應用??????xxfxxflimxylimxf0x0x0?????????00-+==即:????000xxyfxxxfxy??=函數(shù)=在=處的導數(shù),記作:或???
2025-07-25 18:39
【總結(jié)】第三章導數(shù)及其應用,第一頁,編輯于星期六:點三十七分。,3.1變化率與導數(shù)3.1.3導數(shù)的幾何意義,第二頁,編輯于星期六:點三十七分。,,梳理知識夯實基礎,自主學習導航,第三頁,編輯于星期六:點三十七...
2025-10-13 19:01
【總結(jié)】一、復習幾何意義:曲線在某點處的切線的斜率;(瞬時速度或瞬時加速度)物理意義:物體在某一時刻的瞬時度。2、由定義求導數(shù)(三步法)步驟:);()()1(xfxxfy?????求增量;)()()2(xxfxxfxy???????算比值)(,0)3(xfxyx????
2024-11-11 02:53
【總結(jié)】1導數(shù)的幾何意義311..2?????????,.,,''的幾何意義是什么呢導數(shù)么那附近的變化情況在數(shù)反映了函處的瞬時變化率在表示函數(shù)導數(shù)我們知道0000xfxxxfxxxfxf??3P1P2P3P4PTTTTPP??
2024-11-18 01:21
【總結(jié)】第一篇:導數(shù)的幾何意義評課 《導數(shù)的幾何意義》評課稿 前階段聽了一節(jié)《導數(shù)的幾何意義》,對這節(jié)課,我感覺:(一)從教學目標上看 1、了解導數(shù)概念的實際背景,體會導數(shù)的思想及其內(nèi)涵; 2、通過函...
2024-10-28 12:07
【總結(jié)】導數(shù)的幾何意義【教學目標】,會用導數(shù)的定義求曲線的切線方程。。,體會導數(shù)的思想及豐富內(nèi)涵,感受導數(shù)在解決實際問題中的應用?!窘虒W重點】導數(shù)的幾何意義【教學難點】利用導數(shù)解決實際問題一、課前預習1、割線的斜率:已知)(xfy?圖像上兩點))(,(00xfxA,))(,(00xxfxxB????
2024-11-19 05:50
【總結(jié)】復數(shù)的幾何意義⑴一、問題引入:我們知道實數(shù)可以用數(shù)軸上的點來表示。x01一一對應注:規(guī)定了正方向,原點,單位長度的直線叫做數(shù)軸.實數(shù)數(shù)軸上的點(形)(數(shù))實數(shù)的幾何模型:類比實數(shù)的表示,可以用什么來表示復數(shù)?想一想?回憶…復數(shù)的一般形式?
2024-11-17 11:00
【總結(jié)】導數(shù)的幾何意義(課改教案) 教學目的 1.使學生理解導數(shù)的幾何意義;并會用求導數(shù)的方法求切線的斜率和切線方程;利用導數(shù)求法線方程. 2.通過揭示割線與切線之間的內(nèi)在聯(lián)系對學生進行辯證唯物主義的教育. 教學重點 理解導數(shù)的幾何意義是本節(jié)的重點. 教學過程 一、復習提問 1.導數(shù)的定義是什么?求導數(shù)的三個步驟是什么?求函數(shù)y=x2在x=2處的導數(shù).
2025-09-25 17:22
【總結(jié)】:)(00xxkyy???0已知函數(shù)y=f(x)在點x=x及其附近有定義00?叫做函數(shù)y=f(x)在x到x+x之間的平均變化率.00()()x0,fxxfxyxx?????????當時比值'000)()()lim
2024-11-17 05:49
【總結(jié)】導數(shù)的幾何意義【例1】曲線f(x)=x3+2x+1在點M處的切線的斜率為2,求M的坐標【例2】由原點O向三次曲線y=x3-3ax2+bx(a≠0)引切線,切于不同于O的點P1(x1,y1).再由P1引曲線的切線,切于不同于P1的點P2(x2,y2),…,如此繼續(xù)地作下去,得到點列{Pn(xn,yn)},試
2024-11-19 23:16
【總結(jié)】1北師大版高中數(shù)學選修2-2第二章《變化率與導數(shù)》法門高中姚連省制作2一、教學目標:理解導數(shù)的概念,會利用導數(shù)的幾何意義求曲線上某點處的切線方程。二、教學重點:曲線上一點處的切線斜率的求法教學難點:理解導數(shù)的幾何意義三、教學方法:探析歸納,講練結(jié)合四、教學過程3,它是從眾多實際問
2024-11-12 16:44
【總結(jié)】數(shù)系的擴充和復數(shù)的概念復數(shù)的幾何意義i的基本特征是什么?(1)i2=-1;(2)i可以與實數(shù)進行四則運算,且原有的加、乘運算律仍然成立.復習鞏固虛數(shù)單位i的引入解決了負數(shù)不能開平方的矛盾,并將實數(shù)集擴充到了復數(shù)集。?復數(shù)相等的充要條件是什么?a+bi(a,b∈R
2025-08-05 05:02
【總結(jié)】復數(shù)z=a+bi直角坐標系中的點Z(a,b)xyobaZ(a,b)建立了平面直角坐標系來表示復數(shù)的平面x軸實軸y軸虛軸(數(shù))(形)復數(shù)平面(簡稱復平面)一一對應z=a+bi復數(shù)的幾何意義(一)復數(shù)z=a+bi直角坐標系中的點
2025-07-23 06:04
【總結(jié)】導數(shù)及其應用第一章導數(shù)第3課時導數(shù)的幾何意義第一章課堂典例探究2課時作業(yè)3課前自主預習1課前自主預習下雨天,當我們將雨傘轉(zhuǎn)動時,傘面邊沿的水滴沿著傘的切線方向飛出.實際上物體(看作質(zhì)點)做曲線運動時,運動方向在不停地變化,其速度方向為質(zhì)點在其軌跡曲線上的切線方
2024-11-17 20:06