【總結(jié)】線段的垂直平分線教學設計教學內(nèi)容分析:這節(jié)課是把電子白板與幾何畫板結(jié)合的一節(jié)新授課。線段的垂直平分線是對前一課時關于軸對稱圖形性質(zhì)的再認識,又是今后幾何作圖、證明、計算的基礎。學習過程中滲透的轉(zhuǎn)化、探索、歸納等數(shù)學思想方法對學生今后的數(shù)學學習也有重要的意義。學習線段垂直平分線相關知識是為學生創(chuàng)造了一次探究的機會,是學習幾何學的一次磨練。課題:線段的垂直平分線學習目標
2025-04-17 08:11
【總結(jié)】典型例題例1.如圖,已知:在中,,,BD平分交AC于D.求證:D在AB的垂直平分線上.分析:根據(jù)線段垂直平分線的逆定理,欲證D在AB的垂直平分線上,只需證明即可.證明:∵,(已知),∴(的兩個銳角互余)又∵BD平分(已知)∴.∴(等角對等邊)∴D在AB的垂直平分線上(和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上).例2.如圖,已知
2025-03-25 07:09
【總結(jié)】垂直平分線,它們的
2025-03-12 14:29
【總結(jié)】八年級上冊軸對稱(第2課時)課件說明?本節(jié)課內(nèi)容屬于“圖形與幾何”領域,是在學習了軸對稱的概念和性質(zhì)的基礎上,研究線段垂直平分線的性質(zhì)和判定.?學習目標:1.理解線段垂直平分線的性質(zhì)和判定.2.能運用線段垂直平分線的性質(zhì)和判定解決實際問題.3.會用尺規(guī)經(jīng)過已知
2025-06-12 18:27
【總結(jié)】第一章三角形的證明3.線段的垂直平分線(一)一、學生知識狀況分析學生對于掌握定理以及定理的證明并不存在多大得困難,這是因為在七年級學習《生活中的軸對稱》中學生已經(jīng)有了一定的基礎。二、教學任務分析在七年級學生已經(jīng)對線段的垂直平分線有了初步的認識,本節(jié)課將進一步深入探索線段垂直平分線的性質(zhì)和判定。同時,滲透證明一個圖形上的每個點都具有某種
2025-11-15 17:07
【總結(jié)】第一章三角形的證明3.線段的垂直平分線(二)一、學生知識狀況分析通過對前面相關內(nèi)容的學習,學生對如何證明一個命題已經(jīng)積累一些經(jīng)驗并掌握了必要的方法。但是要證明三角形三邊垂直平分線交于一點對學生來說還是較抽象的,因此,教學時,教師對此不要操之過急,應逐步引導學生理解.二、教學任務分析在上一節(jié)課,學生已經(jīng)掌握了線段垂直平分線的
2025-11-15 19:45
【總結(jié)】第一章三角形的證明線段的垂直平分線第1課時線段垂直平分線的性質(zhì)與判定1課堂講解?線段的垂直平分線的性質(zhì)?線段的垂直平分線的判定2課時流程逐點導講練課堂小結(jié)作業(yè)提升線段是軸對稱圖形嗎?它的對稱軸是什么?什么叫線段的垂直平分線?回顧舊知1知識點線段
2024-12-29 01:23
【總結(jié)】THANKS
2025-03-12 11:50
【總結(jié)】垂直平分線角平分線綜合應用 一.解答題(共30小題)1.如圖,已知∠BAC=90°,AD⊥BC于點D,∠1=∠2,EF∥BC交AC于點F.試說明AE=CF.2.如圖,四邊形ABCD中,∠B=90°,AB∥CD,M為BC邊上的一點,且AM平分∠BAD,DM平分∠ADC.求證:(1)AM⊥DM;(2)M為BC的中點.3.已知:如圖,D是等
2025-06-29 10:55
【總結(jié)】線段的垂直平分線(第2課時)北師大版八年級數(shù)學下冊導入新知ABCD..性質(zhì):線段垂直平分線上的點到這條線段兩個端點的距離相等.判定:到一條線段兩個端點距離相等的點,在這條線段的垂直平分線上.1.理解并掌握三角形三邊的垂直平分線
2024-12-29 02:23
【總結(jié)】第2課時線段垂直平分線、垂線的作法2新課導入如圖,已知線段AB,作線段AB的垂直平分線.推進新課根據(jù)“到線段兩端距離相等的點在線段的垂直平分線上”,要作線段AB的垂直平分線,關鍵是找出到線段AB兩端距離相等的兩點.作法:CD你知道為什么嗎?(2)
【總結(jié)】PBACMN一、復習引入:1、等腰三角形性質(zhì);2、角平分線的性質(zhì)定理及逆定理;3、線段垂直平分線的概念和畫法;ABCDOABABMN二、教學目標:1、掌握線段垂直平分線的性質(zhì)定理,能夠運用它們進行有關論證;2、進一步了解有關點的集合的概念;
2025-11-10 05:18
【總結(jié)】線段的垂直平分線(第1課時)北師大版八年級數(shù)學下冊導入新知圖,A、B表示兩個倉庫,要在A、B一側(cè)的河岸邊建造一個碼頭,使它到兩個倉庫的距離相等,碼頭應建在什么位置?PNM點P是碼頭的位置區(qū)政府為了方便居民的生活,計劃在三個住宅小區(qū)A、B、C之間修建一個購物中心,試
【總結(jié)】垂直平分線角平分線培優(yōu)提高練習一.選擇題(共6小題)1.如果三角形內(nèi)有一點到三邊距離相等,且到三頂點的距離也相等,那么這個三角形的形狀是( )A.等腰三角形 B.直角三角形C.等腰直角三角形 D.等邊三角形2.下列各語句中不正確的是( ?。〢.全等三角形的周長相等B.全等三角形的對應角相等C.到角的兩邊距離相等的點在這
2025-03-25 00:08