【總結】導數(shù)的應用知識與技能:1.利用導數(shù)研究函數(shù)的切線、單調性、極大(?。┲狄约昂瘮?shù)在連續(xù)區(qū)間[a,b]上的最大(?。┲?;2.利用導數(shù)求解一些實際問題的最大值和最小值。過程與方法:1.通過研究函數(shù)的切線、單調性、極大(?。┲狄约昂瘮?shù)在連續(xù)區(qū)間[a,b]上的最大(?。┲?,
2024-11-12 16:44
【總結】導數(shù)的概念及應用高三備課高考考綱透析:(理科)?(1)了解導數(shù)概念的某些實際背景(如瞬時速度、加速度、光滑曲線切線的斜率等);掌握函數(shù)在一點處的導數(shù)的定義和導數(shù)的幾何意義;理解導函數(shù)的概念。(2)熟記基本導數(shù)公式;掌握兩個函數(shù)和、差、積、商的求導法則.了解復合函數(shù)的求導法則.會求某些簡單函數(shù)的導數(shù)。(3)理
2025-08-05 19:01
【總結】一、含參函數(shù)的單調性例a>0,函數(shù)f(x)=ln(1+ax)-討論f(x)在區(qū)間(0,+∞)上的單調性.22?xx練習1:設函數(shù)f(x)=1+(1+a)x-x2-x3,a>0.討論f(x)在其定義域上的單調性;二、零點問題例f(x)=x-aex(a∈R),x∈y=f(x)
2024-11-24 17:36
【總結】1小結思考題作業(yè)空間曲線的切線與法平面曲面的切平面與法線第九節(jié)偏導數(shù)在幾何上的應用第八章多元函數(shù)微分法及其應用2一、空間曲線的切線與法平面1.空間曲線的方程為參數(shù)方程設空間曲線的方程()()()(),rrttitjtkt?????????
2025-05-13 14:48
【總結】復習1、某點處導數(shù)的定義——這一點處的導數(shù)即為這一點處切線的斜率2、某點處導數(shù)的幾何意義——3、導函數(shù)的定義——4、由定義求導數(shù)的步驟(三步法)5、求導的公式與法則——如果函數(shù)f(x)、g(x)有導數(shù),那么6、求導的方法——
2024-11-06 23:03
【總結】定理(極值第二判別法)0()0,xxfx???.)(,0)()1(00為極小值則若xfxf???.)(,0)()2(00為極大值則若xfxf???.)(,0)()3(00是否為極值則不能判斷若xfxf???證:(1)由導數(shù)定義,有000)()(lim)(0xxxfxfxfxx????
2025-05-14 02:52
【總結】第14講│導數(shù)的應用第14講導數(shù)的應用知識梳理第14講│知識梳理1.函數(shù)的單調性若函數(shù)f(x)在某區(qū)間內可導,則f′(x)0?f(x)在該區(qū)間上_________;f′(x)0?f(x)在該區(qū)間上____________.反之,若f(x)在某區(qū)間上單調遞增,則在
2024-11-12 01:35
【總結】選修1-1導數(shù)的實際應用一、選擇題1.如果圓柱軸截面的周長l為定值,則體積的最大值為()A.(l6)3πB.(l3)3πC.(l4)3π(l4)3π[答案]A[解析]設圓柱的底面半徑為r,高為h,體積為V,則4r+2h=l,∴h=l-4r2,V=πr2h=l
2024-11-19 05:04
【總結】第一章導數(shù)及其應用復習小結本章知識結構微積分導數(shù)定積分導數(shù)概念導數(shù)運算導數(shù)應用函數(shù)的瞬時變化率運動的瞬時速度曲線的切線斜率基本初等函數(shù)求導導數(shù)的四則運算法則簡單復合函數(shù)的導數(shù)函數(shù)單調性研究函數(shù)的極值、最值
2025-08-05 05:54
【總結】1第三章微分中值定理與導數(shù)的應用2羅爾定理、拉格朗日中值定理、柯西中值定理統(tǒng)稱微分學中值定理,它們在理論上和應用上都有著重大意義,尤其是拉格朗日中值定理,它刻劃了函數(shù)在整個區(qū)間上的變化與導數(shù)概念的局部性之間的聯(lián)系,是研究函數(shù)性質的理論依據(jù)。學習時,可借助于幾何圖形來幫助理解定理的條件,結論以
2025-08-04 12:59
【總結】§解析函數(shù)的高階導數(shù)一個解析函數(shù)不僅有一階導數(shù),而且有各高階導數(shù),它的值也可用函數(shù)在邊界上的值通過積分來表示.這一點和實變函數(shù)完全不同.一個實變函數(shù)在某一區(qū)間上可導,它的導數(shù)在這區(qū)間上是否連續(xù)也不一定,更不要說它有高階導數(shù)存在了.定理解析函數(shù)f(z)的導數(shù)仍為解析函數(shù),它的n階導數(shù)為
2025-05-10 14:16
【總結】2.1導數(shù)的概念2.2函數(shù)的求導法則2.3高階導數(shù)2.4隱函數(shù)及由參數(shù)方程所確定的函數(shù)的導數(shù)2.5導數(shù)的簡單應用2.6函數(shù)的微分導數(shù)的簡單應用一、切線與法線問題二、相關變化率oxy)(xfy??T0xM由導數(shù)的幾何意義,
2025-07-24 13:59
【總結】導數(shù)的應用(理科)[課前導引][課前導引]1.曲線f(x)=x3+x?2在點P處的切線平行于直線y=4x?1,則點P的坐標為()A.(1,0)B.(2,8)C.(1,0)或(?1,?4)D.(2,8)或(?1,4)[課前導引]
2024-11-19 02:58
【總結】導數(shù)的應用(文科)[課前導引][課前導引]1.D1.C0.B2.A)(,22:.223?????的值為數(shù)則整都是銳角任意點處的切線的傾角上若曲線aaxaxxyC[課前導引]1.D1.C
【總結】導數(shù)在實際生活中的應用新課引入:導數(shù)在實際生活中有著廣泛的應用,利用導數(shù)求最值的方法,可以求出實際生活中的某些最值問題..(面積和體積等的最值)(利潤方面最值)(功和功率等最值)例1:在邊長為60cm的正方形鐵片的四角切去相等的正方形,再把它的邊沿虛線折起(如圖),做成一個無
2024-11-17 11:00