【總結(jié)】復(fù)習(xí):一正弦定理:在一個三角形中,各邊的長和它所對角的正弦的比相等,2sinsinsinabcRABC???(1)已知兩角和任意一邊,求其他兩邊和一角;變形:sinsin2sinsinsinbcaAARABC???解唯一?二
2025-08-05 03:12
【總結(jié)】八年級數(shù)學(xué)(下冊)第六章證明(一)5三角形內(nèi)角和定理的證明授課人:楊志軍?△ABC中,∠A=35°,∠C=90°,則∠B=______。?△ABC中,∠A:∠B:∠C=3:2:1,則△ABC是____三角形。?證明命題的一般步驟是:①————
2025-07-24 19:09
【總結(jié)】1、證明命題的一般步驟:回顧與思考?(1)根據(jù)題意,畫出圖形;(2)結(jié)合圖形,用符號語言寫出“已知”和“求證”;(3)依據(jù)思路,運用數(shù)學(xué)符號和數(shù)學(xué)語言條理清晰地寫出證明過程;2、平行線有什么性質(zhì)?定理:兩直線平行,同位角相等.定理:兩直結(jié)平行,內(nèi)錯角相等.定理:兩直線平行,同旁內(nèi)角互補.
2025-07-25 17:05
【總結(jié)】山亭育才中學(xué)翟夫連①∵AD是△ABC的中線∴BD=CDABDC②S△ABD=S△ADC(等底同高)③中線的取值范圍常用的輔助線(見中線加倍延長構(gòu)造全等三角形)AB-AC2AB+AC2AD1中線1中線④重心(三
2024-11-09 22:05
【總結(jié)】銳角三角形直角三角形鈍角三角形——有一個角是鈍角。三角形按角的分類——三個角都是銳角?!幸粋€角是直角。你能舉出生活中用到直角三角形的例子嗎?直角三角形用Rt△表示,如圖記作Rt△ABC,ACB直角邊斜邊直角邊∠C=Rt∠直角三角形
2025-08-01 14:23
【總結(jié)】精品資源基本不等式與余弦定理綜合求解三角形面積的最值探究建水縣第二中學(xué):賈雪光從最近幾年高考試題的考查情況看,解三角形部分的考查中主要是對用正、余弦定理來求解三角形、實際應(yīng)用問題,這兩種常見考法中,靈活應(yīng)用正余弦定理并結(jié)合三角形中的內(nèi)角和定理,大邊對大角,等在三角形中進行邊角之間的相互轉(zhuǎn)化,以及與誘導(dǎo)公式特別是、的聯(lián)系是關(guān)鍵。于是多數(shù)教師在復(fù)習(xí)備考過程中,往往都會將大
2025-06-27 06:56
【總結(jié)】三角形內(nèi)角和定理的證明南京市大廠中學(xué)蔡祝華(說課稿)1、三角形的內(nèi)角和定理是從“數(shù)量關(guān)系”來揭示三角形內(nèi)角之間的關(guān)系的,這個定理是任意三角形的一個重要性質(zhì),它是學(xué)習(xí)以后知識的基礎(chǔ),并且是計算角的度數(shù)的方法之一。在解決四邊形和多邊形的內(nèi)角和時都將轉(zhuǎn)化為三角形的內(nèi)角和來解決。其中輔助線的作法、把新知識轉(zhuǎn)化
2025-08-01 17:32
【總結(jié)】三角形內(nèi)角和定理的證明用橡皮筋構(gòu)成△ABC,其中頂點B、C為定點,A為動點,放松橡皮筋后,點A自動收縮于BC上,請同學(xué)們考察點A變化時所形成的一系列的三角形……其內(nèi)角會產(chǎn)生怎樣的變化呢?看一看結(jié)論:當(dāng)點A遠離BC時,∠A越來越趨近于0°,而AB與AC逐漸趨向平行,這時,∠
2025-07-17 23:43
【總結(jié)】4cm2cm拼成的平行四邊形三角形底/cm高/cm面積/cm2底/cm高/cm面積/cm2428424拼成的平行四邊形三角形底/cm高/cm面積/cm2底/cm高/cm面積/cm24144124cm1cm拼成的平行四邊形三角形
2025-07-25 23:38
【總結(jié)】相似三角形與全等三角形的綜合復(fù)習(xí)友情提示:請根據(jù)課本相關(guān)內(nèi)容,快速解決下列問題,8分鐘后交流展示你的成果。【我反思,我梳理】(一)相似三角形1.定義:各角對應(yīng)________,各邊對應(yīng)成________的兩個三角形叫做相似三角形.2.判定(1)平行于三角
2024-11-24 14:14
【總結(jié)】人教新課標(biāo)四年級數(shù)學(xué)下冊本節(jié)課我們主要來學(xué)習(xí)三角形的分類,同學(xué)們要知道分類的方法以及各類三角形的特點。各種各樣的三角形“神舟”三角形郵票銳角銳角三角形:三個角都是銳角的三角形。直角直角三角形:有一個角是直角的三角形。鈍角鈍角三角形:有一個角是鈍角的三角形?!傲鲃蛹t旗”有
2024-11-22 04:21
【總結(jié)】1、已知:如圖,△ABC中,∠C=90°,D為AB的中點,E、F分別在AC、BC上,且DE⊥DF.求證:AE2+BF2=EF2.2、如圖,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D為AB邊上一點,求證:(1)△ACE≌△BCD;(2)AD2+DB2=DE2.3、如
2025-08-05 03:29
【總結(jié)】第一篇:三角形內(nèi)角和定理教案 教學(xué)案例 學(xué)校:野雞坨鎮(zhèn)丁莊子初級中學(xué) 學(xué)科:數(shù)學(xué) 姓名:田明時間:2018年5月 三角形內(nèi)角和定理教學(xué)案例 一、地位和作用 《三角形內(nèi)角和》是冀教版義務(wù)教...
2025-10-15 19:55
【總結(jié)】第一篇:與三角形有關(guān)的定理、 與三角形有關(guān)的定理:定理三角形兩邊的和大于第三邊推論三角形兩邊的差小于第三邊三角形內(nèi)角和定理三角形三個內(nèi)角的和等于180°推論1直角三角形的兩個銳角互余推論2三角形的一...
2025-10-02 10:54
【總結(jié)】專題:相似三角形定理與圓冪定理本專題主要復(fù)習(xí)相似三角形的進一步認(rèn)識、圓的進一步的認(rèn)識.通過本專題的復(fù)習(xí),了解平行線等分線段定理和平行截割定理;掌握相似三角形的判定定理及性質(zhì)定理;理解直角三角形射影定理.理解圓周角定理及其推論;掌握圓的切線的判定定理及性質(zhì)定理;理解弦切角定理及其推論.掌握相交弦定理、割線定理、切割線定理;理解圓內(nèi)接四邊形的性質(zhì)定理與判定定理.【知識要點】1.相似三
2025-06-24 06:54