【總結】高中數(shù)學精講精練第五章數(shù)列【知識圖解】【方法點撥】1.學會從特殊到一般的觀察、分析、思考,學會歸納、猜想、驗證.2.強化基本量思想,并在確定基本量時注重設變量的技巧與解方程組的技巧.3.在重點掌握等差、等比數(shù)列的通項公式、求和公式、中項等基礎知識的同時,會針對可化為等差(比)數(shù)
2024-11-14 05:05
【總結】2012高考數(shù)學(文科)真題—數(shù)列與不等式專題一、選擇題1.(2012安徽卷)公比為2的等比數(shù)列{}的各項都是正數(shù),且,則()....2.(2012北京卷)已知{}()A.B.C.若,則D.若,則3.(2012福建卷)數(shù)列{}的通項公式,其前項和為,則等于()
2025-01-15 09:54
【總結】2012高考真題分類匯編:數(shù)列一、選擇題1.(2012重慶理1)在等差數(shù)列中,,則的前5項和=()2.(2012浙江理7)設是公差為的無窮等差數(shù)列的前項和,則下列命題錯誤的是(),則數(shù)列有最大項,則,則對任意,均有D.若對任意,均有,則數(shù)列是遞增數(shù)列3.(2012新課標理5
2025-01-14 13:49
【總結】概念、方法、題型、易誤點及應試技巧總結三、數(shù)列一.數(shù)列的概念:數(shù)列是一個定義域為正整數(shù)集N*(或它的有限子集{1,2,3,…,n})的特殊函數(shù),數(shù)列的通項公式也就是相應函數(shù)的解析式。如(1)已知,則在數(shù)列的最大項為__(答:);(2)數(shù)列的通項為,其中均為正數(shù),則與的大小關系為___(答:);(3)已知數(shù)列中,,且是遞增數(shù)列,求實數(shù)的取值范圍(答:);(4)一
2025-04-17 13:06
2025-08-20 20:21
【總結】導數(shù)題型歸納請同學們高度重視:首先,關于二次函數(shù)的不等式恒成立的主要解法:1、分離變量;2變更主元;3根分布;4判別式法5、二次函數(shù)區(qū)間最值求法:(1)對稱軸(重視單調區(qū)間)與定義域的關系(2)端點處和頂點是最值所在其次,分析每種題型的本質,你會發(fā)現(xiàn)大部分都在解決“不等式恒成立問題”以及“充分應用數(shù)形結合思想”,創(chuàng)建不等關系求出取值范圍。
【總結】1.數(shù)列的概念(1)數(shù)列定義:按一定次序排列的一列數(shù)叫做數(shù)列;數(shù)列中的每個數(shù)都叫這個數(shù)列的項。記作,在數(shù)列第一個位置的項叫第1項(或首項),在第二個位置的叫第2項,……,序號為的項叫第項(也叫通項)記作;數(shù)列的一般形式:,,,……,,……,簡記作。例:判斷下列各組元素能否構成數(shù)列(1)a,-3,-1,1,b,5,7,9;
2025-08-10 22:19
【總結】......一、直接(或轉化)由等差、等比數(shù)列的求和公式求和例1(07高考山東文18)設是公比大于1的等比數(shù)列,為數(shù)列的前項和.已知,且構成等差數(shù)列.(1)求數(shù)列的等差數(shù)列.(2)令求數(shù)列的前項和.
2025-03-25 02:52
【總結】歡迎交流唯一QQ1294383109希望大家互相交流數(shù)列求和及綜合應用一、選擇題1.在各項均為正數(shù)的等比數(shù)列{an}中,a3a5=4,則數(shù)列{log2an}的前7項和等于()A.7B.8C.27D.28解析:選{an}中,由a3a5=4,得a24=4,a4=2
2025-08-13 20:07
【總結】【3年高考2年模擬】第六章數(shù)列第一部分三年高考題薈萃高考數(shù)列一、選擇題1.(2020遼寧文)在等差數(shù)列{an}中,已知a4+a8=16,則a2+a10=()A.12B.16C.20D.242.(2020遼寧理)在等差數(shù)列{an}中,已知a4+a8=16,則該數(shù)列前11項和S1
2025-08-20 20:20
【總結】1【備戰(zhàn)2022】高考數(shù)學5年高考真題精選與最新模擬專題04數(shù)列文【2022高考試題】1.【2022高考安徽文5】公比為2的等比數(shù)列{na}的各項都是正數(shù),且3a11a=16,則5a=(A)1(B)2(C)4(D)82.【2022高考全國
2025-01-09 16:26
【總結】百度搜索李蕭蕭文檔百度搜索李蕭蕭文檔2020北京市高三一模數(shù)學理分類匯編4:數(shù)列【2020北京市豐臺區(qū)一模理】10.已知等比數(shù)列{}na的首項為1,若1234,2,aaa,成等差數(shù)列,則數(shù)列1{}na的前5項和為?!敬鸢浮?631【2020北京市房山區(qū)一模理】)(xf是定義
2025-08-14 17:22
【總結】黃岡中學歷年高考數(shù)學6數(shù)列題庫黃岡中學高考數(shù)學知識點敬請去百度文庫搜索---“黃岡中學高考數(shù)學知識點”---結合起來看看效果更好記憶中理解理解中記憶沒有學不好滴數(shù)學涵蓋所有知識點題題皆精心解答第一部分等差數(shù)列、等比數(shù)列的概念及求和一、選擇題1.(2020年廣東卷文)已知等比數(shù)列}{na的公比為正數(shù),且3a·9=2
2025-08-20 20:05
【總結】高考數(shù)學數(shù)列大題訓練1.已知等比數(shù)列分別是某等差數(shù)列的第5項、第3項、第2項,且(Ⅰ)求;(Ⅱ)設,求數(shù)列解析: 設該等差數(shù)列為,則,,即:,,,,的前項和當時,,(8分)當時,,,其中
2025-06-26 05:13
【總結】專題七數(shù)列基本問題1.已知數(shù)列滿足,,則等于()A.0B.C.D.2.等比數(shù)列前3項依次為:1,,,則實數(shù)的值是()A.B.C.D.或3.等比數(shù)列中,,,則等于()A.256B.
2025-01-14 14:08