【總結(jié)】如果a,b∈R,那么a2+b2≥2ab(當(dāng)且僅當(dāng)a=b時(shí)取“=”)證明:222)(2baabba??????????????0)(0)(22babababa時(shí),當(dāng)時(shí),當(dāng)abba222??1.定理適用范圍:Rba?,2.取“=”的條件:ba?定理:
2024-11-18 08:48
【總結(jié)】不等式不等式不等式不等式平均值不等式平均值不等式
2025-04-29 00:24
【總結(jié)】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》必修5《基本不等式-實(shí)際應(yīng)用》審校:王偉?掌握建立不等式模型解決實(shí)際問題.?教學(xué)重點(diǎn):?掌握建立不等式模型解決實(shí)際問題教學(xué)目標(biāo)例1.一般情況下,建筑民用住宅時(shí)。民用住宅窗戶的總面積應(yīng)小于該住宅的占地面積,而窗戶的總面積與占地面積的比值越大
2025-01-15 12:36
【總結(jié)】書山有路勤為徑,學(xué)海無崖苦作舟少小不學(xué)習(xí),老來徒傷悲成功=艱苦的勞動(dòng)+正確的方法+少談空話天才就是百分之一的靈感,百分之九十九的汗水!天才在于勤奮,努力才能成功!\復(fù)習(xí):?比較法是證明不等式的一種最基本、最重要的方法,用比較法證明不
2025-01-16 03:10
【總結(jié)】均值不等式的綜合應(yīng)用22,0,,222abababBabababCDabABCD????????若A=,,,,試比較、、、的大小。CABD???一.均值定理在比較大小中的應(yīng)用:11,lglg,(lglg),2lg(
【總結(jié)】第3課時(shí)均值不等式1.均值不等式基礎(chǔ)知識(shí)梳理2.常用的幾個(gè)重要不等式(1)a2+b2≥(a,b∈R);(2)ab(a+b2)2(a,b∈R);(3)a2+b22(a+b2
2025-07-24 03:54
【總結(jié)】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》必修5《基本不等式-均值不等式》審校:王偉教學(xué)目標(biāo)?推導(dǎo)并掌握兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)這個(gè)重要定理;利用均值定理求極值。了解均值不等式在證明不等式中的簡(jiǎn)單應(yīng)用。?教學(xué)重點(diǎn):?推導(dǎo)并掌握兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)這個(gè)重要定
2025-08-04 10:01
2025-08-04 09:13
【總結(jié)】在數(shù)學(xué)研究中,人們會(huì)遇到這樣的情況,對(duì)于任意正整數(shù)n或不小于某個(gè)數(shù)n0的任意正整數(shù)n,都有某種關(guān)系成立。對(duì)這類問題的證明我們將使用又一種重要的數(shù)學(xué)推理方法--數(shù)學(xué)歸納法與正整數(shù)有關(guān)的命題例如:1×4+2×7+
2025-01-15 08:47
【總結(jié)】不等關(guān)系與不等式第三章不等式不等關(guān)系與不等式知識(shí)目標(biāo)1.通過具體實(shí)例,感受生活中存在的不等關(guān)系2.理解不等關(guān)系及其在數(shù)軸上的幾何表示3.會(huì)用兩個(gè)實(shí)數(shù)之間的差運(yùn)算確定兩實(shí)數(shù)間的大小關(guān)系,能比較兩個(gè)數(shù)式的大小4.能從實(shí)際的不等關(guān)系中抽象出具體的不等式(組)不等式:含有不等號(hào)的式子.≠><
2024-11-17 16:27
【總結(jié)】問題探究大。數(shù)比左邊的點(diǎn)表示的數(shù),右邊的點(diǎn)表示的與表示兩個(gè)不同的實(shí)數(shù)分別與點(diǎn):在數(shù)軸上不同的點(diǎn) 探究baBA1BAbaxAax(B)(b)ABabx從數(shù)軸上兩點(diǎn)的位置(如圖3-1-1)可以看出a,b之間具有哪些性質(zhì)。探究2:任意給出兩個(gè)實(shí)數(shù)a,b你能想到哪些比大
2024-11-17 19:03
【總結(jié)】基本不等式:第1課時(shí)基本不等式1.理解并掌握基本不等式及其推導(dǎo)過程,明確基本不等式成立的條件.2.能利用基本不等式求代數(shù)式的最值.121.重要不等式當(dāng)a,b是任意實(shí)數(shù)時(shí),有a2+b2≥2ab,當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立.(1)公式中a,b的取值是
【總結(jié)】四川省成都市石室中學(xué)高中數(shù)學(xué)基本不等式2教案新人教A版必修5以培養(yǎng)學(xué)生探究精神為出發(fā)點(diǎn),著眼于知識(shí)的生成和發(fā)展,著眼于學(xué)生的學(xué)習(xí)體驗(yàn),設(shè)置問題,由淺入深、循序漸進(jìn),給不同層次的學(xué)生提供思考、創(chuàng)造和成功的機(jī)會(huì)。特進(jìn)行如下教學(xué)設(shè)計(jì):(一)設(shè)問激疑,創(chuàng)設(shè)情景展示北京召開的第24屆國(guó)際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),讓學(xué)生思考,圖案由哪些幾何圖形
2024-11-19 16:13
【總結(jié)】......基本不等式習(xí)專題之基本不等式做題技巧【基本知識(shí)】1.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)2.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)(3)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)(4)當(dāng)且僅當(dāng)
2025-05-13 23:45
【總結(jié)】淄川般陽中學(xué)洪貴云基本不等式:(說課)2baab??教材分析教法分析教學(xué)目標(biāo)教學(xué)過程設(shè)計(jì)說明一.教材分析(一)教材的地位和作用(二)課時(shí)安排一.教材分析(一)教材的地位和作用基本不等式
2025-08-04 23:52