【摘要】第三章不等式§不等關系與不等式自主學習知識梳理1.比較實數(shù)a,b的大小(1)文字敘述如果a-b是正數(shù),那么a________b;如果a-b為______,那么a=b;如果a-b是負數(shù),那么a______b,反之也成立.(2)符號表示a-b0?
2025-11-10 06:19
【摘要】思考1思考2復習引入練習答案作業(yè):課本54P6題數(shù)學歸納法證明不等式數(shù)學歸納法證明不等式(即n=n0第一個命題對應的n的值,如n0=1)(歸納奠基);n=k時命題成立,證明當n=k+1時命題也成立(歸納遞推).數(shù)學歸納法:關于正整數(shù)n的命題(相當于多米諾骨牌
2025-01-15 08:38
【摘要】第一篇:用均值不等式證明不等式 用均值不等式證明不等式 【摘要】:不等式的證明在競賽數(shù)學中占有重要地位.本文介紹了用均值不等式證明幾個不等式,我們在證明不等式時,常用到均值不等式。要求我們要認真分...
2025-10-19 10:42
【摘要】復習回顧數(shù)一元一次方程一元一次不等式二元一次方程形30x??100xy???x0-330x??oxy1010春節(jié)的時候,爸爸給5歲的小明10元壓歲錢,小明想用于買零食和玩具.但為了培養(yǎng)小
2024-11-29 01:20
【摘要】考情分析通過分析近三年的高考試題可以看出,不但考查用數(shù)學歸納法去證明現(xiàn)成的結論,還考查用數(shù)學歸納法證明新發(fā)現(xiàn)的結論的正確性.數(shù)學歸納法的應用主要出現(xiàn)在數(shù)列解答題中,一般是先根據(jù)遞推公式寫出數(shù)列的前幾項,通過觀察項與項數(shù)的關系,猜想出數(shù)列的通項公式,再用數(shù)學歸納法進行證明,初步形成“觀察—歸納—猜想—證明”的思維模式;利用數(shù)學歸納法證明
2025-01-15 08:47
【摘要】第一篇:均值不等式教案 §均值不等式 【教學目標】 【教學重點】 掌握均值不等式 【教學難點】 利用均值不等式證明不等式或求函數(shù)的最值,【教學過程】 一、均值不等式: 均值定理...
2025-10-27 18:15
【摘要】第2課時基本不等式的應用1.復習鞏固基本不等式.2.能利用基本不等式求函數(shù)的最值,并會解決有關的實際應用問題.121.重要不等式a2+b2≥2ab(1)證明:課本應用了圖形間的面積關系推導出了a2+b2≥2ab,也可用分析法證明如下:要證明a2+b
2025-11-09 08:10
【摘要】:2baab??復習引入基本不等式:.)0,0(2????baabba;222abba??講授新課.4,的最值,求是正數(shù)且abbaba??例1.講授新課.4,的最值,求是正數(shù)且abbaba??例1.變式1..42,的最值,求
2025-11-10 18:02
【摘要】:2baab??引入新課提問1:我們把“風車”造型抽象成下圖.在正方形ABCD中有4個全等的直角三角形.設直角三角形的兩條直角邊的長為a、b,那么正方形的邊長為多少?面積為多少呢?ADCBGEFH引入新課提問1:我們把“風車”造型抽象成下圖.在
2025-11-10 18:20
【摘要】第三章不等式數(shù)學(人教B版·必修5)典題導析課前自主預習重點難點展示思路方法技巧建模應用引路探索延拓創(chuàng)新課堂鞏固訓練名師辨誤做答第三章不等式數(shù)學
2025-08-05 04:34
【摘要】均值不等式的推廣:2、222(,)1122ababababRab????????3(,,)3abcabcabcR?????1、三、典例分析:,,abc222abcabbcca?????例1、已知是不全相等的實數(shù),求證:22
2025-03-13 05:16
【摘要】,ab3abab???ab例1、若正數(shù)滿足,則的取值范圍是什么?解:32ababab????當且僅當ab?時,等號成立。32abab???2()230abab????3ab??或1ab??(舍)9ab??ab?的取值范圍是[9,)??,ab3ab
【摘要】立足教育開創(chuàng)未來·高中總復習(第一輪)·理科數(shù)學·全國版1第六章不等式第講立足教育開創(chuàng)未來·高中總復習(第一輪)·理科數(shù)學·全國版2考點搜索●利用基本不等式證明不等式●運用重要不等式求最值
2025-08-11 14:47
【摘要】知識回顧1.重要不等式;2.基本不等式。(均值)回顧練習.abcdbdaccdabdcbacabcabcbaRcba4211222?????????))(證:(都為正數(shù),求,,,)已知 ?。?,求證:,,)設:( 練習們的積最大?個正數(shù)取什么值時,它這兩寫成兩個正數(shù)的和,當)把 ?。?/span>
2025-03-12 14:58
【摘要】思考:該結論可推廣到三個正數(shù),四個正數(shù),…,甚至n個正數(shù)嗎?002,,..abababab?????若則等號當且僅當時成立2,,,,,.ababababab?
2025-07-23 15:42