freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

mit牛人解說數(shù)學體系-資料下載頁

2025-08-04 09:06本頁面
  

【正文】 間中,它們存在微妙的差別。3. 在有限維空間中,所有線性變換(矩陣)都是有界變換,而在無限維,很多算子是無界的(unbounded),最重要的一個例子是給函數(shù)求導。4. 在有限維空間中,一切有界閉集都是緊的,比如單位球。而在所有的無限維空間中,單位球都不是緊的——也就是說,可以在單位球內(nèi)撒入無限個點,而不出現(xiàn)一個極限點。5. 在 有限維空間中,線性變換(矩陣)的譜相當于全部的特征值,在無限維空間 中,算子的譜的結(jié)構(gòu)比這個復雜得多,除了特征值組成的點譜(point spectrum),還有approximate point spectrum和residual spectrum。雖然復雜,但是,也更為有趣。由此形成了一個相當豐富的分支——算子譜論(Spectrum theory)。6. 在 有限維空間中,任何一點對任何一個子空間總存在投影,而在無限維空間中, 這就不一定了,具有這種良好特性的子空間有個專門的名稱切比雪夫空間(Chebyshev space)。這個概念是現(xiàn)代逼近理論的基礎(chǔ)(approximation theory)。函數(shù)空間的逼近理論在Learning中應該有著非常重要的作用,但是現(xiàn)在看到的運用現(xiàn)代逼近理論的文章并不多。繼續(xù)往前:巴拿赫代數(shù),調(diào)和分析,和李代數(shù)基 本的泛函分析繼續(xù)往前走,有兩個重要的方向。第一個是巴拿赫代數(shù) (Banach Algebra),它就是在巴拿赫空間(完備的內(nèi)積空間)的基礎(chǔ)上引入乘法(這不同于數(shù)乘)。比如矩陣——它除了加法和數(shù)乘,還能做乘法——這就構(gòu)成了一 個巴拿赫代數(shù)。除此以外,值域完備的有界算子,平方可積函數(shù),都能構(gòu)成巴拿赫代數(shù)。巴拿赫代數(shù)是泛函分析的抽象,很多對于有界算子導出的結(jié)論,還有算子譜 論中的許多定理,它們不僅僅對算子適用,它們其實可以從一般的巴拿赫代數(shù)中得到,并且應用在算子以外的地方。巴拿赫代數(shù)讓你站在更高的高度看待泛函分析中 的結(jié)論,但是,我對它在實際問題中能比泛函分析能多帶來什么東西還有待思考。最 能把泛函分析和實際問題在一起的另一個重要方向是調(diào)和分析 (Harmonic Analysis)。我在這里列舉它的兩個個子領(lǐng)域,傅立葉分析和小波分析,我想這已經(jīng)能說明它的實際價值。它研究的最核心的問題就是怎么用基函數(shù)去逼近 和構(gòu)造一個函數(shù)。它研究的是函數(shù)空間的問題,不可避免的必須以泛函分析為基礎(chǔ)。除了傅立葉和小波,調(diào)和分析還研究一些很有用的函數(shù)空間,比如Hardy space,Sobolev space,這些空間有很多很好的性質(zhì),在工程中和物理學中都有很重要的應用。對于vision來說,調(diào)和分析在信號的表達,圖像的構(gòu)造,都是非常有用的 工具。當分析和線性代數(shù)走在一起,產(chǎn)生了 泛函分析和調(diào)和分析;當分析和群論走在一 起,我們就有了李群(Lie Group)和李代數(shù)(Lie Algebra)。它們給連續(xù)群上的元素賦予了代數(shù)結(jié)構(gòu)。我一直認為這是一門非常漂亮的數(shù)學:在一個體系中,拓撲,微分和代數(shù)走到了一起。在一定條件下, 通過李群和李代數(shù)的聯(lián)系,它讓幾何變換的結(jié)合變成了線性運算,讓子群化為線性子空間,這樣就為Learning中許多重要的模型和算法的引入到對幾何運動 的建模創(chuàng)造了必要的條件。因此,我們相信李群和李代數(shù)對于vision有著重要意義,只不過學習它的道路可能會很艱辛,在它之前需要學習很多別的數(shù)學。現(xiàn)代概率論:在現(xiàn)代分析基礎(chǔ)上再生最 后,再簡單說說很多Learning的研究者特別關(guān)心的數(shù)學分支:概率論。 自從Kolmogorov在上世紀30年代把測度引入概率論以來,測度理論就成為現(xiàn)代概率論的基礎(chǔ)。在這里,概率定義為測度,隨機變量定義為可測函數(shù),條 件隨機變量定義為可測函數(shù)在某個函數(shù)空間的投影,均值則是可測函數(shù)對于概率測度的積分。值得注意的是,很多的現(xiàn)代觀點,開始以泛函分析的思路看待概率論的 基礎(chǔ)概念,隨機變量構(gòu)成了一個向量空間,而帶符號概率測度則構(gòu)成了它的對偶空間,其中一方施加于對方就形成均值。角度雖然不一樣,不過這兩種方式殊途同 歸,形成的基礎(chǔ)是等價的。在現(xiàn)代概率論的 基礎(chǔ)上,許多傳統(tǒng)的分支得到了極大豐富,最有代表性的包括鞅論 (Martingale)——由研究賭博引發(fā)的理論,現(xiàn)在主要用于金融(這里可以看出賭博和金融的理論聯(lián)系,:P),布朗運動(Brownian Motion)——連續(xù)隨機過程的基礎(chǔ),以及在此基礎(chǔ)上建立的隨機分析(Stochastic Calculus),包括隨機積分(對隨機過程的路徑進行積分,其中比較有代表性的叫伊藤積分(Ito Integral)),和隨機微分方程。對于連續(xù)幾何運用建立概率模型以及對分布的變換的研究離不開這些方面的知識。終于寫完了——也謝謝你把這么長的文章看完,希望其中的一些內(nèi)容對你是有幫助的。
點擊復制文檔內(nèi)容
公司管理相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1