freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

mit牛人解說(shuō)數(shù)學(xué)體系-資料下載頁(yè)

2025-08-04 09:06本頁(yè)面
  

【正文】 間中,它們存在微妙的差別。3. 在有限維空間中,所有線性變換(矩陣)都是有界變換,而在無(wú)限維,很多算子是無(wú)界的(unbounded),最重要的一個(gè)例子是給函數(shù)求導(dǎo)。4. 在有限維空間中,一切有界閉集都是緊的,比如單位球。而在所有的無(wú)限維空間中,單位球都不是緊的——也就是說(shuō),可以在單位球內(nèi)撒入無(wú)限個(gè)點(diǎn),而不出現(xiàn)一個(gè)極限點(diǎn)。5. 在 有限維空間中,線性變換(矩陣)的譜相當(dāng)于全部的特征值,在無(wú)限維空間 中,算子的譜的結(jié)構(gòu)比這個(gè)復(fù)雜得多,除了特征值組成的點(diǎn)譜(point spectrum),還有approximate point spectrum和residual spectrum。雖然復(fù)雜,但是,也更為有趣。由此形成了一個(gè)相當(dāng)豐富的分支——算子譜論(Spectrum theory)。6. 在 有限維空間中,任何一點(diǎn)對(duì)任何一個(gè)子空間總存在投影,而在無(wú)限維空間中, 這就不一定了,具有這種良好特性的子空間有個(gè)專門的名稱切比雪夫空間(Chebyshev space)。這個(gè)概念是現(xiàn)代逼近理論的基礎(chǔ)(approximation theory)。函數(shù)空間的逼近理論在Learning中應(yīng)該有著非常重要的作用,但是現(xiàn)在看到的運(yùn)用現(xiàn)代逼近理論的文章并不多。繼續(xù)往前:巴拿赫代數(shù),調(diào)和分析,和李代數(shù)基 本的泛函分析繼續(xù)往前走,有兩個(gè)重要的方向。第一個(gè)是巴拿赫代數(shù) (Banach Algebra),它就是在巴拿赫空間(完備的內(nèi)積空間)的基礎(chǔ)上引入乘法(這不同于數(shù)乘)。比如矩陣——它除了加法和數(shù)乘,還能做乘法——這就構(gòu)成了一 個(gè)巴拿赫代數(shù)。除此以外,值域完備的有界算子,平方可積函數(shù),都能構(gòu)成巴拿赫代數(shù)。巴拿赫代數(shù)是泛函分析的抽象,很多對(duì)于有界算子導(dǎo)出的結(jié)論,還有算子譜 論中的許多定理,它們不僅僅對(duì)算子適用,它們其實(shí)可以從一般的巴拿赫代數(shù)中得到,并且應(yīng)用在算子以外的地方。巴拿赫代數(shù)讓你站在更高的高度看待泛函分析中 的結(jié)論,但是,我對(duì)它在實(shí)際問(wèn)題中能比泛函分析能多帶來(lái)什么東西還有待思考。最 能把泛函分析和實(shí)際問(wèn)題在一起的另一個(gè)重要方向是調(diào)和分析 (Harmonic Analysis)。我在這里列舉它的兩個(gè)個(gè)子領(lǐng)域,傅立葉分析和小波分析,我想這已經(jīng)能說(shuō)明它的實(shí)際價(jià)值。它研究的最核心的問(wèn)題就是怎么用基函數(shù)去逼近 和構(gòu)造一個(gè)函數(shù)。它研究的是函數(shù)空間的問(wèn)題,不可避免的必須以泛函分析為基礎(chǔ)。除了傅立葉和小波,調(diào)和分析還研究一些很有用的函數(shù)空間,比如Hardy space,Sobolev space,這些空間有很多很好的性質(zhì),在工程中和物理學(xué)中都有很重要的應(yīng)用。對(duì)于vision來(lái)說(shuō),調(diào)和分析在信號(hào)的表達(dá),圖像的構(gòu)造,都是非常有用的 工具。當(dāng)分析和線性代數(shù)走在一起,產(chǎn)生了 泛函分析和調(diào)和分析;當(dāng)分析和群論走在一 起,我們就有了李群(Lie Group)和李代數(shù)(Lie Algebra)。它們給連續(xù)群上的元素賦予了代數(shù)結(jié)構(gòu)。我一直認(rèn)為這是一門非常漂亮的數(shù)學(xué):在一個(gè)體系中,拓?fù)?,微分和代?shù)走到了一起。在一定條件下, 通過(guò)李群和李代數(shù)的聯(lián)系,它讓幾何變換的結(jié)合變成了線性運(yùn)算,讓子群化為線性子空間,這樣就為L(zhǎng)earning中許多重要的模型和算法的引入到對(duì)幾何運(yùn)動(dòng) 的建模創(chuàng)造了必要的條件。因此,我們相信李群和李代數(shù)對(duì)于vision有著重要意義,只不過(guò)學(xué)習(xí)它的道路可能會(huì)很艱辛,在它之前需要學(xué)習(xí)很多別的數(shù)學(xué)?,F(xiàn)代概率論:在現(xiàn)代分析基礎(chǔ)上再生最 后,再簡(jiǎn)單說(shuō)說(shuō)很多Learning的研究者特別關(guān)心的數(shù)學(xué)分支:概率論。 自從Kolmogorov在上世紀(jì)30年代把測(cè)度引入概率論以來(lái),測(cè)度理論就成為現(xiàn)代概率論的基礎(chǔ)。在這里,概率定義為測(cè)度,隨機(jī)變量定義為可測(cè)函數(shù),條 件隨機(jī)變量定義為可測(cè)函數(shù)在某個(gè)函數(shù)空間的投影,均值則是可測(cè)函數(shù)對(duì)于概率測(cè)度的積分。值得注意的是,很多的現(xiàn)代觀點(diǎn),開始以泛函分析的思路看待概率論的 基礎(chǔ)概念,隨機(jī)變量構(gòu)成了一個(gè)向量空間,而帶符號(hào)概率測(cè)度則構(gòu)成了它的對(duì)偶空間,其中一方施加于對(duì)方就形成均值。角度雖然不一樣,不過(guò)這兩種方式殊途同 歸,形成的基礎(chǔ)是等價(jià)的。在現(xiàn)代概率論的 基礎(chǔ)上,許多傳統(tǒng)的分支得到了極大豐富,最有代表性的包括鞅論 (Martingale)——由研究賭博引發(fā)的理論,現(xiàn)在主要用于金融(這里可以看出賭博和金融的理論聯(lián)系,:P),布朗運(yùn)動(dòng)(Brownian Motion)——連續(xù)隨機(jī)過(guò)程的基礎(chǔ),以及在此基礎(chǔ)上建立的隨機(jī)分析(Stochastic Calculus),包括隨機(jī)積分(對(duì)隨機(jī)過(guò)程的路徑進(jìn)行積分,其中比較有代表性的叫伊藤積分(Ito Integral)),和隨機(jī)微分方程。對(duì)于連續(xù)幾何運(yùn)用建立概率模型以及對(duì)分布的變換的研究離不開這些方面的知識(shí)。終于寫完了——也謝謝你把這么長(zhǎng)的文章看完,希望其中的一些內(nèi)容對(duì)你是有幫助的。
點(diǎn)擊復(fù)制文檔內(nèi)容
公司管理相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1