freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

mit牛人解說數(shù)學(xué)體系(完整版)

2024-09-06 09:06上一頁面

下一頁面
  

【正文】 d的model。在深入探索這個題目的過程中,遇到了很多很多的問題,如何描述一個一般的運動過程,如何建立一個穩(wěn)定并且廣泛適用的原子表達,如何刻畫微觀運動和宏觀分布變換的聯(lián)系,還有很多。不過,這個貌似平常 的公理卻能演繹出一些比較奇怪的結(jié)論,比如巴拿赫塔斯基分球定理——“一個球,能分成五個部分,對它們進行一系列剛性變換(平移旋轉(zhuǎn))后,能組合成兩個一樣大小的球”。分析研究 的對象很多,包括導(dǎo)數(shù)(derivatives),積分(integral),微分方程(differential equation),還有級數(shù)(infinite series)——這些基本的概念,在初等的微積分里面都有介紹。在19世紀(jì)的時候,分析的世界仍然有著一些揮之不去的烏云。顯然,在衡量點集大小的時候,有限和無限并不是一種合適的標(biāo)準(zhǔn)。但是,我認(rèn)為,它并不是一種純數(shù)學(xué)概念 游戲,它的現(xiàn)實意義在于為許多現(xiàn)代的應(yīng)用數(shù)學(xué)分支提供堅實的基礎(chǔ)。拓?fù)鋵W(xué):分析從實數(shù)軸推廣到一般空間——現(xiàn)代分析的抽象基礎(chǔ)隨 著實數(shù)理論的建立,大家開始把極限和連續(xù)推廣到更一般的地方的分析。這兩個概念是開區(qū)間和閉區(qū)間的推廣,它們的根本地位,并不是 一開始就被認(rèn)識到的。在分析中,基礎(chǔ)運算是“極限”,因此連續(xù)函數(shù)在分析中的地位,和同態(tài)映射在代數(shù)中的地位是相當(dāng)?shù)摹K谕負(fù)鋵W(xué)中的一般定義是一個聽上去比較抽象的東西——“緊集的任意 開覆蓋存在有限子覆蓋”。這些東西也可以推廣到拓?fù)淇臻g,在拓?fù)鋵W(xué)的基礎(chǔ)上建立起來——這就是微分幾何。對我的研究來說,微分幾何最重要的應(yīng)用就是建立在它之上的另外一個分支:李群和李代數(shù)——這是數(shù) 學(xué)中兩大家族分析和代數(shù)的一個漂亮的聯(lián)姻。在主 要的代數(shù)結(jié)構(gòu)中,最簡單的是群(Group)——它只有一種符合結(jié)合率的可逆運算,通常叫“乘法”。當(dāng)然,在實際運用中,我們還是希望用它 干點有意義的事情。也許在 很多場合下面,我們需要非線性來描述復(fù)雜的現(xiàn)實世界,但是無論什么時候,線性都是具有根本地位的。這表明了,為了研究函數(shù)(或者說連續(xù)信號),我們需要打破有限維空間的束縛,走入無限維的函數(shù)空 間——這里面的第一步,就是泛函分析。3. 在有限維空間中,所有線性變換(矩陣)都是有界變換,而在無限維,很多算子是無界的(unbounded),最重要的一個例子是給函數(shù)求導(dǎo)。函數(shù)空間的逼近理論在Learning中應(yīng)該有著非常重要的作用,但是現(xiàn)在看到的運用現(xiàn)代逼近理論的文章并不多。我在這里列舉它的兩個個子領(lǐng)域,傅立葉分析和小波分析,我想這已經(jīng)能說明它的實際價值。在一定條件下, 通過李群和李代數(shù)的聯(lián)系,它讓幾何變換的結(jié)合變成了線性運算,讓子群化為線性子空間,這樣就為Learning中許多重要的模型和算法的引入到對幾何運動 的建模創(chuàng)造了必要的條件。在現(xiàn)代概率論的 基礎(chǔ)上,許多傳統(tǒng)的分支得到了極大豐富,最有代表性的包括鞅論 (Martingale)——由研究賭博引發(fā)的理論,現(xiàn)在主要用于金融(這里可以看出賭博和金融的理論聯(lián)系,:P),布朗運動(Brownian Motion)——連續(xù)隨機過程的基礎(chǔ),以及在此基礎(chǔ)上建立的隨機分析(Stochastic Calculus),包括隨機積分(對隨機過程的路徑進行積分,其中比較有代表性的叫伊藤積分(Ito Integral)),和隨機微分方程。它研究的是函數(shù)空間的問題,不可避免的必須以泛函分析為基礎(chǔ)。第一個是巴拿赫代數(shù) (Banach Algebra),它就是在巴拿赫空間(完備的內(nèi)積空間)的基礎(chǔ)上引入乘法(這不同于數(shù)乘)。而在所有的無限維空間中,單位球都不是緊的——也就是說,可以在單位球內(nèi)撒入無限個點,而不出現(xiàn)一個極限點。在 泛函分析中,空間中的元素還是叫向量,但是線性變換通常會叫作“算子”(operator)。我們常 用的非線性化的方法包括流形和kernelization,這兩者都需要在某個階段回歸線性。抽 象代數(shù)有在一些基礎(chǔ)定理的基礎(chǔ)上,進一步的研究往往分為兩個流派:研究有限 的離散代數(shù)結(jié)構(gòu)(比如有限群和有限域),這部分內(nèi)容通常用于數(shù)論,編碼,和整數(shù)方程這些地方;另外一個流派是研究連續(xù)的代數(shù)結(jié)構(gòu),通常和拓?fù)渑c分析聯(lián)系在 一起(比如拓?fù)淙海钊海?。如果有兩種運算,一種叫加法,滿足交換率和結(jié)合率,一種叫乘法,滿足結(jié)合率,它們之間滿足分配率,這種豐富一點的結(jié)構(gòu)叫做環(huán)(Ring), 如果環(huán)上的乘法滿足交換率,就叫可交換環(huán)(Commutative Ring)。還有一種是建 立在現(xiàn)代拓?fù)鋵W(xué)的基礎(chǔ)上,這里姑且稱為“現(xiàn)代微分幾何”——它的核心概念就是“流形”(manifold)——就是在拓?fù)淇臻g的基礎(chǔ)上加了一套可以進行微 分運算的結(jié)構(gòu)。對于分析來說,用得更多的是它的另一種形式 ——“緊集中的數(shù)列必存在收斂子列”——它體現(xiàn)了分析中最重要的“極限”。比它略為窄一點的概念叫(Pa
點擊復(fù)制文檔內(nèi)容
公司管理相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1