【總結(jié)】第一篇:構(gòu)造函數(shù)證明數(shù)列不等式答案 構(gòu)造函數(shù)證明數(shù)列不等式答案 : ln22+ln33+ln44+L+ ln33 nn 3- n 5n+66 (n?N).* 解析:先構(gòu)造函數(shù)有l(wèi)...
2025-10-19 06:10
【總結(jié)】第一篇:構(gòu)造函數(shù),結(jié)合導數(shù)證明不等式 構(gòu)造函數(shù),結(jié)合導數(shù)證明不等式 摘要:運用導數(shù)法證明不等式首先要構(gòu)建函數(shù),以函數(shù)作為載體可以用移項作差,直接構(gòu)造;合理變形,等價構(gòu)造;分析(條件)結(jié)論,特征構(gòu)造...
2025-10-19 05:32
【總結(jié)】第一篇:構(gòu)造法證明不等式5 構(gòu)造法證明不等式(2) (以下的構(gòu)造方法要求過高,即使不會也可以,如果沒有時 間就不用看了) 在學習過程中,常遇到一些不等式的證明,看似簡單,但卻無從下手,多種常用...
2025-10-19 01:37
【總結(jié)】第一篇:函數(shù)法證明不等式[大全] 函數(shù)法證明不等式 已知函數(shù)f(x)=x-sinx,數(shù)列{an}滿足0 證明0 證明an+1 3它提示是構(gòu)造一個函數(shù)然后做差求導,確定單調(diào)性??墒沁€是一點思路...
2025-10-21 22:00
【總結(jié)】第一篇:導數(shù)證明不等式構(gòu)造函數(shù)法類別(教師版) 導數(shù)證明不等式構(gòu)造函數(shù)法類別 1、移項法構(gòu)造函數(shù) 1£ln(x+1)£xx+11-1,分析:本題是雙邊不等式,其右邊直接從已知函數(shù)證明,左邊構(gòu)造函...
2025-10-18 22:43
【總結(jié)】精品資源構(gòu)造法證明不等式例析由于證明不等式?jīng)]有固定的模式,證法靈活多樣,技巧性強,使得不等式證明成為中學數(shù)學的難點之一.下面通過數(shù)例介紹構(gòu)造法在證明不等式中的應(yīng)用.一、構(gòu)造一次函數(shù)法證明不等式有些不等式可以和一次函數(shù)建立直接聯(lián)系,通過構(gòu)造一次函數(shù)式,利用一次函數(shù)的有關(guān)特性,完成不等式的證明.例1設(shè)0≤a、b、c≤2,求證:4a+b+c+abc≥2ab+2bc+2ca.
2025-06-24 16:44
【總結(jié)】第一篇:構(gòu)造函數(shù)證明不等式的八種方法[最終版] 構(gòu)造函數(shù)證明不等式的八種方法 一、移項法構(gòu)造函數(shù) 例: 1、已知函數(shù)f(x)=ln(x+1)-x,求證:當x-1時,但有1- 2、已知函數(shù)f...
2025-10-22 14:50
【總結(jié)】第一篇:高二數(shù)學構(gòu)造函數(shù)法在不等式證明中運用 構(gòu)造函數(shù)法在不等式證明中運用 作者:酒鋼三中樊等林 不等式的證明歷來是高中數(shù)學的難點,也是考察學生數(shù)學能力的主要方面。不等式的證明方法多種多樣,根據(jù)...
2025-10-30 17:00
【總結(jié)】寧波大學理學院本科畢業(yè)設(shè)計(論文)I編號:本科畢業(yè)設(shè)計(論文)題目:構(gòu)造法證明不等式
2025-07-07 18:21
【總結(jié)】第一篇:構(gòu)造一次函數(shù)證明不等式 =kx+b的圖象可知,如果f(m)0,f(n)0,則對一切x?(m,n)均有f(x)設(shè)a、b、c都是絕對值小于1的實數(shù),求證:ab+bc+ca+bc+ca=(...
2025-11-01 18:04
【總結(jié)】第一篇:構(gòu)造函數(shù)證明不等式或比較大小 構(gòu)造函數(shù)比較大小或證明不等式(及二次求導) 1.【2012高考浙江文10】設(shè)a>0,b>0,e是自然對數(shù)的底數(shù),則() +2a=eb+3b,則ab +2...
2025-10-19 07:05
【總結(jié)】寧波大學理學院本科畢業(yè)設(shè)計(論文)編號: 本科畢業(yè)設(shè)計(論文)題目:構(gòu)造法證明不等式Constructing
2025-06-28 00:56
【總結(jié)】第一篇:構(gòu)造法與放縮法在不等式證明中的運用 構(gòu)造法與放縮法在不等式證明中的運用 例1:設(shè)函數(shù)f(x)=x-(x+1)ln(x+1)(x-1).(1)求f(x)的單調(diào)區(qū)間; (2)證明:當nm...
2025-10-19 03:31
【總結(jié)】第一篇:證明不等式方法 不等式的證明是高中數(shù)學的一個難點,題型廣泛,涉及面廣,證法靈活,錯法多種多樣,本節(jié)通這一些實例,歸納整理證明不等式時常用的方法和技巧。1比較法 比較法是證明不等式的最基本方...
2025-10-20 04:53
【總結(jié)】第一篇:壓軸題型訓練5-構(gòu)造函數(shù)證明不等式 構(gòu)造函數(shù)證明不等式 函數(shù)是高中數(shù)學的基礎(chǔ),,我們可根據(jù)不等式的結(jié)構(gòu)特點,建立起適當?shù)暮瘮?shù)模型,利用函數(shù)的單調(diào)性、凸性等性質(zhì),靈活、、二次函數(shù)型: :a...
2025-10-18 17:42