【總結(jié)】第一篇:不等式證明之函數(shù)構(gòu)造法(顏秀華) 不等式證明之函數(shù)構(gòu)造法 作者顏秀華 (湖南省,長(zhǎng)沙市第七中學(xué),郵編410003) 【摘要】利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值和最值,再由單調(diào)性來(lái)證明不等式是...
2024-10-26 05:25
【總結(jié)】第一篇:對(duì)構(gòu)造函數(shù)法證明不等式的再研究 龍?jiān)雌诳W(wǎng)://. 對(duì)構(gòu)造函數(shù)法證明不等式的再研究 作者:時(shí)英雄 來(lái)源:《理科考試研究·高中》2013年第10期 某刊一文闡述了構(gòu)造法證明不等式的九個(gè)...
2024-10-26 17:38
【總結(jié)】第一篇:導(dǎo)數(shù)證明不等式構(gòu)造函數(shù)法類別(學(xué)生版) 導(dǎo)數(shù)證明不等式構(gòu)造函數(shù)法類別 1、移項(xiàng)法構(gòu)造函數(shù) 1£ln(x+1)£xx+11-1,分析:本題是雙邊不等式,其右邊直接從已知函數(shù)證明,左邊構(gòu)造函...
2024-10-26 15:00
【總結(jié)】第一篇:壓軸題型訓(xùn)練5-構(gòu)造函數(shù)證明不等式 構(gòu)造函數(shù)證明不等式 函數(shù)是高中數(shù)學(xué)的基礎(chǔ),,我們可根據(jù)不等式的結(jié)構(gòu)特點(diǎn),建立起適當(dāng)?shù)暮瘮?shù)模型,利用函數(shù)的單調(diào)性、凸性等性質(zhì),靈活、、二次函數(shù)型: :a...
2024-10-27 17:42
【總結(jié)】第一篇:構(gòu)造函數(shù),妙解不等式 構(gòu) 不等式與函數(shù)是高中數(shù)學(xué)最重要的兩部分內(nèi)容。把作為高中數(shù)學(xué)重要工具的不等式與作為高中數(shù)學(xué)主線的函數(shù)聯(lián)合起來(lái),這樣資源的優(yōu)化配置將使學(xué)習(xí)內(nèi)容在函數(shù)思想的指導(dǎo)下得到重組...
2024-10-31 14:49
【總結(jié)】第一篇:構(gòu)造函數(shù)處理不等式問(wèn)題 構(gòu)造函數(shù)處理不等式問(wèn)題 函數(shù)與方程,不等式等聯(lián)系比較緊密,如果從方程,不等式等問(wèn)題中所提供的信息得知其本質(zhì)與函數(shù)有關(guān),該題就可考慮運(yùn)用構(gòu)造函數(shù)的方法求解。構(gòu)造函數(shù),...
2024-10-31 14:46
【總結(jié)】第一篇:構(gòu)造函數(shù)法證明不等式的八種方法 構(gòu)造函數(shù)法證明不等式的八種方法 利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值和最值,再由單調(diào)性來(lái)證明不等式是函數(shù)、導(dǎo)數(shù)、不等式綜合中的一個(gè)難點(diǎn),也是近幾年高考的熱點(diǎn)。 解...
2024-10-28 04:52
【總結(jié)】第一篇:導(dǎo)數(shù)證明不等式構(gòu)造函數(shù)法類別(教師版) 導(dǎo)數(shù)證明不等式構(gòu)造函數(shù)法類別 1、移項(xiàng)法構(gòu)造函數(shù) 1£ln(x+1)£xx+11-1,分析:本題是雙邊不等式,其右邊直接從已知函數(shù)證明,左邊構(gòu)造函...
2024-10-27 22:43
【總結(jié)】第一篇:構(gòu)造法證明不等式5 構(gòu)造法證明不等式(2) (以下的構(gòu)造方法要求過(guò)高,即使不會(huì)也可以,如果沒(méi)有時(shí) 間就不用看了) 在學(xué)習(xí)過(guò)程中,常遇到一些不等式的證明,看似簡(jiǎn)單,但卻無(wú)從下手,多種常用...
2024-10-28 01:37
【總結(jié)】第一篇:函數(shù)法證明不等式[大全] 函數(shù)法證明不等式 已知函數(shù)f(x)=x-sinx,數(shù)列{an}滿足0 證明0 證明an+1 3它提示是構(gòu)造一個(gè)函數(shù)然后做差求導(dǎo),確定單調(diào)性??墒沁€是一點(diǎn)思路...
2024-10-30 22:00
【總結(jié)】精品資源構(gòu)造法證明不等式例析由于證明不等式?jīng)]有固定的模式,證法靈活多樣,技巧性強(qiáng),使得不等式證明成為中學(xué)數(shù)學(xué)的難點(diǎn)之一.下面通過(guò)數(shù)例介紹構(gòu)造法在證明不等式中的應(yīng)用.一、構(gòu)造一次函數(shù)法證明不等式有些不等式可以和一次函數(shù)建立直接聯(lián)系,通過(guò)構(gòu)造一次函數(shù)式,利用一次函數(shù)的有關(guān)特性,完成不等式的證明.例1設(shè)0≤a、b、c≤2,求證:4a+b+c+abc≥2ab+2bc+2ca.
2025-06-24 16:44
【總結(jié)】第一篇:不等式證明,均值不等式 1、設(shè)a,b?R,求證:ab3(ab)+aba+b23abba2、已知a,b,c是不全相等的正數(shù),求證:a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc...
2024-11-03 17:10
【總結(jié)】第一篇:高二數(shù)學(xué)構(gòu)造函數(shù)法在不等式證明中運(yùn)用 構(gòu)造函數(shù)法在不等式證明中運(yùn)用 作者:酒鋼三中樊等林 不等式的證明歷來(lái)是高中數(shù)學(xué)的難點(diǎn),也是考察學(xué)生數(shù)學(xué)能力的主要方面。不等式的證明方法多種多樣,根據(jù)...
2024-11-08 17:00
【總結(jié)】第一篇:關(guān)于和式的數(shù)列不等式證明方法 關(guān)于“和式”的數(shù)列不等式證明方法 方法:先求和,再放縮 例 1、設(shè)數(shù)列{an}滿足a1=0且an 1n,2an+1=1+an+1gan,n ?N*,記...
2024-10-28 23:38
【總結(jié)】第一篇:放縮法與數(shù)列不等式的證明 2017高三復(fù)習(xí)靈中黃老師的專題 放縮法證明數(shù)列不等式 編號(hào):001引子:放縮法證明數(shù)列不等式歷來(lái)是高中數(shù)學(xué)的難點(diǎn),在高考數(shù)列試題中經(jīng)常扮演壓軸的角色。由于放縮...
2024-10-28 03:17