【總結(jié)】課題二次函數(shù)的圖像和性質(zhì)教學(xué)內(nèi)容一、二次函數(shù)概念:1.二次函數(shù)的概念:一般地,形如(是常數(shù),)的函數(shù),叫做二次函數(shù)。這里需要強(qiáng)調(diào):和一元二次方程類似,二次項(xiàng)系數(shù),而可以為零.二次函數(shù)的定義域是全體實(shí)數(shù).2.二次函數(shù)的結(jié)構(gòu)特征:⑴等號(hào)左邊是函數(shù),右邊是關(guān)于自變量的二次式,的最高次數(shù)是2.⑵是常數(shù),是二
2025-07-26 04:32
【總結(jié)】二次函數(shù)的圖象和性質(zhì)1、小李從如圖所示的二次函數(shù)的圖象中,觀察得出了下面四條信息:(1)b2-4ac>0;(2)c>1;(3)ab>0;(4)a-b+c<0.你認(rèn)為其中錯(cuò)誤的有()yxO(第4題)A.2個(gè) B.3個(gè) C.4個(gè) D.1個(gè)第1題(-1,2)和點(diǎn)N(
2025-03-24 06:26
【總結(jié)】專題四二次函數(shù)的圖像與性質(zhì)(一)【知識(shí)梳理】1.一般地,形如_______的函數(shù)叫做二次函數(shù),當(dāng)a_______,b________時(shí),是一次函數(shù).2.二次函數(shù)y=ax2+bx+c的圖象是_______,對(duì)稱軸是_______,頂點(diǎn)坐標(biāo)是_______.3.拋物線的開口方向由a確定,當(dāng)a0時(shí),開口_______;當(dāng)a0時(shí),開口_______;越
2025-03-24 05:53
【總結(jié)】第二節(jié)二次函數(shù)的圖像與性質(zhì)1.能夠利用描點(diǎn)法做出函數(shù)y=ax2,y=a(x-h)2,y=a(x-h)2+k和圖象,能根據(jù)圖象認(rèn)識(shí)和理解二次函數(shù)的性質(zhì);2.理解二次函數(shù)中a、b、c對(duì)函數(shù)圖象的影響。一、二次函數(shù)圖象的畫法五點(diǎn)繪圖法:利用配方法將二次函數(shù)化為頂點(diǎn)式,確定其開口方向、對(duì)稱軸及頂點(diǎn)坐標(biāo),然后在對(duì)稱軸兩側(cè),:頂點(diǎn)、與軸的交點(diǎn)、以及關(guān)于對(duì)稱軸對(duì)稱的點(diǎn)、與
2025-06-23 13:56
【總結(jié)】一元二次函數(shù)綜合練習(xí)題1、二次函數(shù)的圖象如圖所示,對(duì)稱軸是直線,則下列四個(gè)結(jié)論錯(cuò)誤的是A.B.C.D.2、已知二次函數(shù)的圖象如圖所示,有以下結(jié)論:①;②;③;④;⑤其中所有正確結(jié)論的序號(hào)是()A.①② B. ①③④ C.①②③⑤ D.①②③④⑤yxO1-1
2025-03-24 05:31
【總結(jié)】第10課時(shí)§二次函數(shù)與一元二次方程教學(xué)目標(biāo)1、經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會(huì)方程與函數(shù)之間的聯(lián)系2、經(jīng)歷用圖象法求一元二次方程的近似根的過程,獲得用圖象法求方程近似根的體驗(yàn)3、理解二次函數(shù)與x軸交點(diǎn)的個(gè)數(shù)與一元二次方程的根的個(gè)數(shù)之間的關(guān)系,理解何時(shí)方程有兩個(gè)不等的實(shí)根、兩個(gè)相等的實(shí)根和沒有實(shí)
2025-11-15 22:10
【總結(jié)】二次函數(shù)的應(yīng)用回顧:二次函數(shù)y=ax2+bx+c的性質(zhì)y=ax2+bx+c(a≠0)a0a0開口方向頂點(diǎn)坐標(biāo)對(duì)稱軸增減性極值向上向下在對(duì)稱軸的左側(cè),y隨著x的增大而減小。在對(duì)稱軸的右側(cè),y隨著x的增大而增大。在對(duì)稱軸的左側(cè),y隨著x的增
2025-11-13 04:09
【總結(jié)】y=ax2+bx+c的圖象與性質(zhì)回顧:二次函數(shù)y=a(x-h)2+k的性質(zhì)y=a(x-h)2+k(a≠0)a0ah時(shí)
【總結(jié)】二次函數(shù)的圖像和性質(zhì)中考復(fù)習(xí)賀蘭四中主講教師李春桃1、二次函數(shù)的概念2、二次函數(shù)的圖形和性質(zhì)一、知識(shí)回顧?填表:想一想,填一填,比一比,說一說:函數(shù)表達(dá)式開口方向增減性對(duì)稱軸頂點(diǎn)坐標(biāo)2axy?caxy??2??2hxay??cbxaxy?
2025-11-13 02:30
【總結(jié)】1二次函數(shù)的圖像與性質(zhì)一、基礎(chǔ)知識(shí)1、二次函數(shù)的三種形式:一般式:)0,(2???acbaxy為常數(shù),且頂點(diǎn)式:;交點(diǎn)式:.)0()(2????akhxay)(21?x2、一般地,拋物線與的形狀相同,向上(下)向左(右)kxy2)(y?平移,可得到拋物線.平移的方向、距離要根據(jù),拋
2025-06-16 00:32
【總結(jié)】知識(shí)框架一、二次函數(shù)的基本形式1.二次函數(shù)基本形式:的性質(zhì):2.的性質(zhì)3.的性質(zhì):4.的性質(zhì):二、二次函數(shù)圖象的平移三、二次函數(shù)與的比較四、二次函數(shù)圖象的畫法五、二次函數(shù)的性質(zhì)六、二次函數(shù)解析式的表示方法七、二次函數(shù)的圖象與各項(xiàng)系數(shù)之間的關(guān)系八、二次函數(shù)圖象的對(duì)稱九、二次函數(shù)與一元二次方程:考點(diǎn)一:二次函數(shù)的定義相關(guān)典型例題
2025-04-04 04:24
【總結(jié)】《二次函數(shù)y=ax2的圖象和性質(zhì)》教學(xué)設(shè)計(jì)臨高縣皇桐中學(xué)周小花一、教學(xué)內(nèi)容分析二次函數(shù)y=ax2的圖像和性質(zhì)是人教版九年級(jí)數(shù)學(xué)上冊(cè)第二十二章第一節(jié)第二課時(shí)的內(nèi)容,是在學(xué)生學(xué)習(xí)了二次函數(shù)的基本概念之后引入的新內(nèi)容,也是后面研究坐標(biāo)形式和一般形式的二次函數(shù)圖像性質(zhì)的基礎(chǔ)。所以,學(xué)習(xí)本節(jié)內(nèi)容我們既要對(duì)前段的內(nèi)容進(jìn)行升華,又要對(duì)后段內(nèi)容進(jìn)行啟發(fā)。?二、教學(xué)對(duì)象分析九年
2025-04-16 13:36
【總結(jié)】二次函數(shù)復(fù)習(xí)注意:當(dāng)二次函數(shù)表示某個(gè)實(shí)際問題時(shí),還必須根據(jù)題意確定自變量的取值范圍.:形如y=ax2+bx+c(a,b,c是常數(shù),a≠0)的函數(shù)叫做二次函數(shù)自變量x的取值范圍是:任意實(shí)數(shù):(1)二次函數(shù)的一般形式:函數(shù)y=ax2+bx+c(a≠0)注意:它的特殊形式:當(dāng)b=0,c
2025-11-12 23:05
【總結(jié)】二次函數(shù)y=ax2+k圖象復(fù)習(xí)二次函數(shù)y=ax2的圖象是什么形狀呢?什么確定y=ax2的性質(zhì)?通常怎樣畫一個(gè)函數(shù)的圖象?我們來(lái)畫最簡(jiǎn)單的二次函數(shù)y=2x2的圖象。還記得如何用描點(diǎn)法畫一個(gè)函數(shù)的圖象嗎?x…-2-1012…
2025-11-12 00:05
【總結(jié)】二次函數(shù)y=ax2+bx+c圖象和性質(zhì)(4)xyoy=ax2y=ax2+ky=a(x–h)2y=a(x–h)2+k上下平移左右平移上下平移左右平移在上述移動(dòng)中圖象的開口方向、形狀、頂點(diǎn)坐標(biāo)、對(duì)稱軸,哪些有變化?哪些沒有變化?有變化的:拋
2025-11-11 23:47