【正文】
VpIp primary PF = VsIs secondary PFwhere PF is the power factor. For the abovestated assumption it means that the power factor on primary and secondary sides are equal。 thereforeVpIp = VsIsfrom which is obtainedIt shows that as an approximation the terminal voltage ratio equals the turns ratio. The primary and secondary current, on the other hand, are inversely related to the turns ratio. The turns ratio gives a measure of how much the secondary voltage is raised or lowered in relation to the primary voltage. To calculate the voltage regulation, we need more information.The ratio of the terminal voltage varies somewhat depending on the load and its power factor. In practice, the transformation ratio is obtained from the nameplate data, which list the primary and secondary voltage under fullload condition.When the secondary voltage Vs is reduced pared to the primary voltage, the transformation is said to be a stepdown transformer: conversely, if this voltage is raised, it is called a stepup transformer. In a stepdown transformer the transformation ratio a is greater than unity (a), while for a stepup transformer it is smaller than unity (a). In the event that a=1, the transformer secondary voltage equals the primary voltage. This is a special type of transformer used in instances where electrical isolation is required between the primary and secondary circuit while maintaining the same voltage level. Therefore, this transformer is generally knows as an isolation transformer.As is apparent, it is the magnetic flux in the core that forms the connecting link between primary and secondary circuit. In section 4 it is shown how the primary winding current adjusts itself to the secondary load current when the transformer supplies a load.Looking into the transformer terminals from the source, an impedance is seen which by definition equals Vp / Ip. we have Vp = aVs and Ip = Is/ terms of Vs and Is the ratio of Vp to Ip isBut Vs / Is is the load impedance ZL thus we can say thatZm (primary) = a2ZLThis equation tells us that when an impedance is connected to the secondary side, it appears from the source as an impedance having a magnitude that is a2 times its actual value. We say that the load impedance is reflected or referred to the primary. It is this property of transformers that is used in impedancematching applications.4. TRANSFORMERS UNDER LOADThe primary and secondary voltages shown have similar polarities, as indicated by the “dotmaking” convention. The dots near the upper ends of the windings have the same meaning as in circuit theory。 the marked terminals have the same polarity. Thus when a load is connected to the secondary, the instantaneous load current is in the direction shown. In other words, the polarity markings signify that when positive current enters both windings at the marked terminals, the MMFs of the two windings add.In general, it will be found that the transformer reacts almost instantaneously to keep the resultant core flux essentially constant. Moreover, the core flux φ0 drops very slightly between n o load and full load (about 1 to 3%), a necessary condition if Ep is to fall sufficiently to allow an increase in Ip.On the primary side, Ip’ is the current that flows in the primary to balance the demagnetizing effect of Is. Its MMF NpIp’ sets up a flux linking the primary only. Since the core flux φ0 remains constant. I0 must be the same current that energizes the transformer at no load. The primary current Ip is therefore the sum of the current Ip’ and I0.Because the noload current is relatively small, it is correct to assume that the primary ampereturns equal the secondary ampereturns, since it is under this condition that the core flux is essentially constant. Thus we will assume that I0 is negligible, as it is only a small ponent of the fullload current.When a current flows in the secondary winding, the resulting MMF (NsIs) creates a separate flux, apart from the flux φ0 produced by I0, which links the secondary winding only. This flux does no link with the primary winding and is therefore not a mutual flux.In addition, the load current that flows through the primary winding creates a flux that links with the primary winding only。 it is called the primary leakage flux. The secondary leakage flux gives rise to an induced voltage that is not counter balanced by an equivalent induced voltage in the primary. Similarly, the voltage induced in the primary is not counterbalanced in the secondary winding. Consequently, these two induced voltages behave like voltage drops, generally called leakage reactance voltage drops. Furthermore, each winding has some resistance, which produces a resistive voltage drop. When taken into account, these additional voltage drops would plete the equivalent circuit diagram of a practical transformer. Note that the magnetizing branch is shown in this circuit, which for our purposes will be disregarded. This follows our earlier assumption that the noload current is assumed negligible in our calculations. This is further justified in that it is rarely necessary to predict transformer performance to such accuracies. Since the voltage drops are all directly proportional to the load current, it means that at noload conditions there will be no voltage drops in either winding.32洛陽理工學(xué)院畢業(yè)設(shè)計論文33洛陽理工學(xué)院畢業(yè)設(shè)計論文36