freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

第六講函數(shù)與方程-資料下載頁

2025-06-29 17:08本頁面
  

【正文】 a)=a2+1.(如圖(I))若,則f(x)在區(qū)間(∞,a]上的最小值為(如圖II). ②當x≥a時,若,則f(x)在[a,+∞]上的最小值為(如圖III)。若,則f(x)在[a,+∞]上單調(diào)遞增。則f(x)在[a,+∞]上的最小值為f(a)=a2+1.(如圖IV)。綜上,當時,f(x)最小值為。當時,f(x)最小值為a2+1。當時,f(x)最小值為。點評:該題考察到函數(shù)的圖像與性質(zhì)的綜合應(yīng)用,考察了分類討論的思想。題型8:二次函數(shù)的綜合問題例15.(2005浙江文20)已知函數(shù)和的圖象關(guān)于原點對稱,且。(Ⅰ)求函數(shù)的解析式; (Ⅱ)解不等式; (Ⅲ)若在上是增函數(shù),求實數(shù)的取值范圍。解析:(Ⅰ)設(shè)函數(shù)的圖象上任意一點關(guān)于原點的對稱點為,則∵點在函數(shù)的圖象上∴(Ⅱ)由當時,此時不等式無解。當時,解得。因此,原不等式的解集為。(Ⅲ)①②?。ⅲc評:本題主要考查函數(shù)圖象的對稱、二次函數(shù)的基本性質(zhì)與不等式的應(yīng)用等基礎(chǔ)知識,以及綜合運用所學知識分析和解決問題的能力。例16.已知函數(shù)。(1)將的圖象向右平移兩個單位,得到函數(shù),求函數(shù)的解析式;(2)函數(shù)與函數(shù)的圖象關(guān)于直線對稱,求函數(shù)的解析式;(3)設(shè),已知的最小值是且,求實數(shù)的取值范圍。解析:(1)(2)設(shè)的圖像上一點,點關(guān)于的對稱點為,由點Q在的圖像上,所以 ,于是 即 (3)。設(shè),則。問題轉(zhuǎn)化為:對恒成立. 即 對恒成立. (*)故必有.(否則,若,則關(guān)于的二次函數(shù)開口向下,當充分大時,必有;而當時,顯然不能保證(*)成立.),此時,由于二次函數(shù)的對稱軸,所以,問題等價于,即,解之得:。此時,故在取得最小值滿足條件。點評:緊扣二次函數(shù)的頂點式對稱軸、最值、判別式顯合力。五.思維總結(jié)1.函數(shù)零點的求法:①(代數(shù)法)求方程的實數(shù)根;②(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點。2.學習二次函數(shù),可以從兩個方面入手:一是解析式,二是圖像特征. 從解析式出發(fā),可以進行純粹的代數(shù)推理,這種代數(shù)推理、論證的能力反映出一個人的基本數(shù)學素養(yǎng);從圖像特征出發(fā),可以實現(xiàn)數(shù)與形的自然結(jié)合,這正是中學數(shù)學中一種非常重要的思想方法. 本文將從這兩個方面研究涉及二次函數(shù)的一些綜合問題。由于二次函數(shù)的解析式簡捷明了,易于變形(一般式、頂點式、零點式等),所以,在解決二次函數(shù)的問題時,常常借助其解析式,通過純代數(shù)推理,進而導出二次函數(shù)的有關(guān)性質(zhì)。(1)二次函數(shù)的一般式中有三個參數(shù). 解題的關(guān)鍵在于:通過三個獨立條件“確定”這三個參數(shù)。(2)數(shù)形結(jié)合:二次函數(shù)的圖像為拋物線,具有許多優(yōu)美的性質(zhì),如對稱性、單調(diào)性、凹凸性等。結(jié)合這些圖像特征解決有關(guān)二次函數(shù)的問題,可以化難為易,形象直觀。因為二次函數(shù)在區(qū)間和區(qū)間上分別單調(diào),所以函數(shù)在閉區(qū)間上的最大值、最小值必在區(qū)間端點或頂點處取得;函數(shù)在閉區(qū)間上的最大值必在區(qū)間端點或頂點處取得。歡迎下載
點擊復制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1