freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

第32講不等式解法及應(yīng)用-資料下載頁

2025-06-29 16:32本頁面
  

【正文】 別為:, 最少總用水量是.當(dāng),故T()是增函數(shù)(也可以用二次函數(shù)的單調(diào)性判斷)。這說明,隨著的值的最少總用水量, 最少總用水量最少總用水量。點(diǎn)評(píng):通過實(shí)際情景建立函數(shù)關(guān)系式求解不等式問題成為高考的亮點(diǎn),解題的關(guān)鍵是建立函數(shù)模型,通過函數(shù)的性質(zhì)特別是單調(diào)性建立不等關(guān)系求得結(jié)果。例10.(1998全國文2理22)如圖6—1,為處理含有某種雜質(zhì)的污水,要制造一底寬為2米的無蓋長方體沉淀箱,污水從A孔流入,經(jīng)沉淀后從B孔流出,設(shè)箱體的長度為a米,、b各為多少米時(shí),經(jīng)沉淀后流出的水中該雜質(zhì)的質(zhì)量分?jǐn)?shù)最小(A、B孔的面積忽略不計(jì))?解法一:設(shè)y為流出的水中雜質(zhì)的質(zhì)量分?jǐn)?shù),則y=,其中k>0為比例系數(shù),依題意,即所求的a、b值使y值最小。根據(jù)題設(shè),有4b+2ab+2a=60(a>0,b>0),得b=(0<a<30 ①,于是。當(dāng)a+2=時(shí)取等號(hào),y達(dá)到最小值。這時(shí)a=6,a=-10(舍去) 將a=6代入①式得b=3,故當(dāng)a為6米,b為3米時(shí),經(jīng)沉淀后流出的水中該雜質(zhì)的質(zhì)量分?jǐn)?shù)最小。解法二:依題意,即所求的a、b值使ab最大。由題設(shè)知4b+2ab+2a=60(a>0,b>0),即a+2b+ab=30(a>0,b>0)?!遖+2b≥2 ∴2+ab≤30,當(dāng)且僅當(dāng)a=2b時(shí),上式取等號(hào).由a>0,b>0,解得0<ab≤18即當(dāng)a=2b時(shí),ab取得最大值,其最大值為18。∴2b2=18.解得b=3,a=6。故當(dāng)a為6米,b為3米時(shí),經(jīng)沉淀后流出的水中該雜質(zhì)的質(zhì)量分?jǐn)?shù)最小。點(diǎn)評(píng):本題考查綜合應(yīng)用所學(xué)數(shù)學(xué)知識(shí)、思想和方法解決實(shí)際問題的能力,考查函數(shù)關(guān)系、不等式性質(zhì)、最大值、最小值等基礎(chǔ)知識(shí),考查利用均值不等式求最值的方法、閱讀理解能力、建模能力。五.思維總結(jié)1.在復(fù)習(xí)不等式的解法時(shí),加強(qiáng)等價(jià)轉(zhuǎn)化思想的訓(xùn)練與復(fù)習(xí)解不等式的過程是一個(gè)等價(jià)轉(zhuǎn)化的過程,通過等價(jià)轉(zhuǎn)化可簡化不等式(組),以快速、準(zhǔn)確求解。,如含參數(shù)等問題,學(xué)生要學(xué)會(huì)分析引起分類討論的原因,合理的分類,做到不重不漏。加強(qiáng)函數(shù)與方程思想在不等式中的應(yīng)用訓(xùn)練。不等式、函數(shù)、方程三者密不可分,相互聯(lián)系、,加強(qiáng)化歸思想的復(fù)習(xí),證不等式的過程是一個(gè)把已知條件向要證結(jié)論的一個(gè)轉(zhuǎn)化過程,既可考查學(xué)生的基礎(chǔ)知識(shí),又可考查學(xué)生分析問題和解決問題的能力,正因?yàn)樽C不等式是高考考查學(xué)生代數(shù)推理能力的重要素材,復(fù)習(xí)時(shí)應(yīng)引起我們的足夠重視。2.強(qiáng)化不等式的應(yīng)用突出不等式的知識(shí)在解決實(shí)際問題中的應(yīng)用價(jià)值,借助不等式來考查學(xué)生的應(yīng)用意識(shí)。高考中除單獨(dú)考查不等式的試題外,常在一些函數(shù)、數(shù)列、立體幾何、解析幾何和實(shí)際應(yīng)用問題的試題中涉及不等式的知識(shí),加強(qiáng)不等式應(yīng)用能力,在復(fù)習(xí)時(shí)應(yīng)加強(qiáng)這方面訓(xùn)練,提高應(yīng)用意識(shí),總結(jié)不等式的應(yīng)用規(guī)律,才能提高解決問題的能力。如在實(shí)際問題應(yīng)用中,主要有構(gòu)造不等式求解或構(gòu)造函數(shù)求函數(shù)的最值等方法,求最值時(shí)要注意等號(hào)成立的條件,避免不必要的錯(cuò)誤。3.突出重點(diǎn)綜合考查在知識(shí)與方法的交匯點(diǎn)處設(shè)計(jì)命題,在不等式問題中蘊(yùn)含著豐富的函數(shù)思想,不等式又為研究函數(shù)提供了重要的工具,不等式與函數(shù)既是知識(shí)的結(jié)合點(diǎn),又是數(shù)學(xué)知識(shí)與數(shù)學(xué)方法的交匯點(diǎn),因而在歷年高考題中始終是重中之重。在全面考查函數(shù)與不等式基礎(chǔ)知識(shí)的同時(shí),將不等式的重點(diǎn)知識(shí)以及其他知識(shí)有機(jī)結(jié)合,進(jìn)行綜合考查,強(qiáng)調(diào)知識(shí)的綜合和知識(shí)的內(nèi)在聯(lián)系,加大數(shù)學(xué)思想方法的考查力度,是高考對(duì)不等式考查的又一新特點(diǎn)。歡迎下
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1