【總結(jié)】不等式的解法????類型mdcxbax)2(a)x(fa)x(f)1(??????或形如定理bababa?????baba)iv(baba)iii(baba)ii(baba)i(,Rb,a)1(1????????????
2025-07-18 00:19
【總結(jié)】第7講不等式的解法主講人:馮老師(一)一元一次不等式的解法加法法則:ab?a+cb+c乘法法則:ab,且c0?acbcab,且c0?acbc復(fù)習(xí):觀察下列式子(1)x=4;
2025-07-25 23:54
【總結(jié)】一不等式的解法1含絕對值不等式的解法(關(guān)鍵是去掉絕對值)利用絕對值的定義:(零點(diǎn)分段法)利用絕對值的幾何意義:表示到原點(diǎn)的距離公式法:,與型的不等式的解法.2整式不等式的解法根軸法(零點(diǎn)分段法)1)化簡(將不等式化為不等號右邊為0,左邊的最高次項系數(shù)為正);2)分解因式;3)標(biāo)根(令每個因式為0,求出
2025-06-26 16:40
【總結(jié)】[鍵入文字]石門高級中學(xué)(lah)抽象不等式的解答方法一、利用單調(diào)性、奇偶性等函數(shù)的性質(zhì)模型1:在區(qū)間上單調(diào)遞增,若,則。模型2:奇函數(shù)在區(qū)間上單調(diào)遞增,若,則可得,。例題:已知函數(shù),則的解集為______.解析:為奇函數(shù),求導(dǎo)得,在上單調(diào)遞增,由得,,,解得,,或??偨Y(jié):1、將目標(biāo)寫成具體不等式,則得到超越不等式,無法解答。沒
2025-06-22 16:46
【總結(jié)】含絕對值的不等式解法(一)復(fù)習(xí)思考1、復(fù)習(xí)初中學(xué)過的不等式的三條基本性質(zhì).(1)、如果,那么(2)、如果,那么(3)、注意:性質(zhì)(3)是不等式兩邊都乘以同一個負(fù)數(shù),不等號的方向要變.2、復(fù)習(xí)絕對值的定義及其幾何意義.幾何意義:x在數(shù)軸上所對應(yīng)點(diǎn)到原點(diǎn)的距離(二).探究新知,在數(shù)軸上在數(shù)軸上應(yīng)該怎樣表示?解絕對值不等式,由絕對值的意
2025-04-17 00:47
【總結(jié)】一、簡單的一元二次不等式的解法:(1);(2); (3); (4).={x|x2-3x-28≤0},N={x2-x-60},則M∩N為( ?。。粒鴟-4≤x-2或3<x≤7} B.{x|-4<x≤-2或3≤x<7}C.{x|x≤-2或x>3} D.{x|x<-2或x
2025-06-26 02:12
【總結(jié)】河南省泌陽縣職業(yè)教育中心周祥松指數(shù)不等式的解法是利用指數(shù)函數(shù)的性質(zhì)化為同解的代數(shù)不等式);()();()(10);()();()(1)()()()()()()()(xgxfaaxgxfaa時,axgxfaaxgxfaa時,axgxfxgxfxgxf
2025-08-15 22:11
2025-05-09 00:31
【總結(jié)】不等式的解法舉例(2)——高次不等式與分式不等式的解法.教學(xué)目的:掌握簡單高次不等式與分式不等式的解法.教學(xué)重點(diǎn):把四類分式不等式轉(zhuǎn)化為整式不等式來解,用轉(zhuǎn)化法、列表法與標(biāo)根法求解分式、高次不等式:整理→標(biāo)根→畫線→選解教學(xué)難點(diǎn):1.分式不等式轉(zhuǎn)化為整式不等式來解,進(jìn)而化歸到一元一次、一元二次不等式來解. 2.帶
2025-06-23 23:35
【總結(jié)】教學(xué)案例§1.4含絕對值的不等式解法學(xué)校:織金二中組別:數(shù)學(xué)組姓名:田茂松教學(xué)目標(biāo):(一)知識目標(biāo)(認(rèn)知目標(biāo))1、理解并會求的解集;2、掌握的解法.(二)能力目標(biāo)1、通過不等式的求解,加強(qiáng)學(xué)生的運(yùn)算能力;2、培養(yǎng)學(xué)生數(shù)形結(jié)合、整體代換、等價轉(zhuǎn)化等的思想.(三)情感目標(biāo)1、感悟形與數(shù)不同的數(shù)學(xué)形態(tài)間的和諧同一美;2、培
2025-04-17 00:12
【總結(jié)】關(guān)于含參數(shù)(單參)的一元二次不等式的解法探究含參數(shù)的一元二次不等式的解法與具體的一元二次不等式的解法在本質(zhì)上是一致的,這類不等式可從分析兩個根的大小及二次系數(shù)的正負(fù)入手去解答,但遺憾的是這類問題始終成為絕大多數(shù)學(xué)生學(xué)習(xí)的難點(diǎn),此現(xiàn)象出現(xiàn)的根本原因是學(xué)生不清楚該如何對參數(shù)進(jìn)行討論,筆者認(rèn)為這層“紙”捅破了,問題自然得到了很好的解決,在教學(xué)的過程中本人發(fā)現(xiàn)參數(shù)的討論實際上就是參數(shù)的分類,而參
2025-04-07 20:32
【總結(jié)】1關(guān)于含參數(shù)(單參)的一元二次不等式的解法探究含參數(shù)的一元二次不等式的解法與具體的一元二次不等式的解法在本質(zhì)上是一致的,這類不等式可從分析兩個根的大小及二次系數(shù)的正負(fù)入手去解答,但遺憾的是這類問題始終成為絕大多數(shù)學(xué)生學(xué)習(xí)的難點(diǎn),此現(xiàn)象出現(xiàn)的根本原因是學(xué)生不清楚該如何對參數(shù)進(jìn)行討論,筆者認(rèn)為這層“紙”捅破了,問題自然得到了很好的解決,在教學(xué)的過程中本人發(fā)現(xiàn)參數(shù)的討
2025-08-11 21:45
【總結(jié)】不等式的解法(一)一、基礎(chǔ)知識1、一元一次不等式的解法ax>b或ax<b2、絕對值不等式|x|>a(a>0)x<-a或x>a|x|<a(a>0)-a<x<a
2024-11-06 21:52
【總結(jié)】§復(fù)習(xí)回顧:.00bcaccbabcaccbacbcaba??????????,那么,如果;,那么,如果;,那么如果2.絕對值的意義:??????????.0000時,當(dāng)時,,當(dāng)時,,當(dāng)xxxxxx1.不等式的性質(zhì):?
2025-07-25 13:30
【總結(jié)】不等式的解法(二)1、一元一次不等式的解法ax>b或ax<b2、絕對值不等式|x|>a(a>0)x<-a或x>a|x|<a(a>0)-a<x<a
2024-11-06 18:13