【總結(jié)】柯西不等式練習題1.(09紹興二模)設。(1)求的最大值;(2)求的取值范圍。2.(09寧波十校聯(lián)考)已知,且,求的最小值。3.(09溫州二模)已知,且。(1)若,求的值;(2)若恒成立,求正數(shù)的取值范圍。4、(09嘉興二模)設,且。(1)求證:;(2)求的最小
2025-03-25 04:42
【總結(jié)】柯西不等式的初等證明及變形作者:張黎娜在客觀事物中,不等量關(guān)系是普遍的,等量關(guān)系是相對的,不等式更一般地反映了數(shù)量之間的關(guān)系和規(guī)律,,不等式在中學數(shù)學中具有重要地位和廣泛應用,,不等式相關(guān)問題也就成了歷年高考數(shù)學的考查重點,突出考查學生聯(lián)系與轉(zhuǎn)化,分類討論,數(shù)形結(jié)合等重要的數(shù)學思想方法和邏輯思維,數(shù)學應用等
2025-08-23 05:32
【總結(jié)】課時作業(yè)(三十九)絕對值不等式及柯西不等式(選修4-5)一、選擇題1.“|x-1|<2成立”是“x(x-3)<0成立”的( )A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件答案:B解析:|x-1|<2?-1<x<3,x(x-3)<0?0<x<3.則(0,3)(-1,3).故應選B.2.設a,b為滿足ab<0的實
2025-08-05 15:29
【總結(jié)】柯西不等式?答案:及幾種變式.、b、c、d為實數(shù),求證證法:(比較法)=….=定理:若a、b、c、d為實數(shù),則.變式:或或.定理:設,則(當且僅當時取等號,假設)變式:.定理:設是兩個向量,則.等號成立?(是零向量,或者共線)練習:已知a、b、c、d為實數(shù),求證.
2025-04-04 05:05
【總結(jié)】基本不等式及應用一、考綱要求:.2.會用基本不等式解決簡單的最大(小)值問題.3.了解證明不等式的基本方法——綜合法.二、基本不等式基本不等式不等式成立的條件等號成立的條件≤a0,b0a=b三、常用的幾個重要不等式(1)a2+b2≥2ab(a,b∈R)(2)ab≤()2(a,b∈R)(3)≥()2(a,
2025-04-16 22:38
【總結(jié)】柯西不等式各種形式的證明及其應用????n? ??? ?bk??3??akakbk?÷柯西不等式是由大數(shù)學家柯西(Cauchy)在研究數(shù)學分析中的“流數(shù)”問題時得到的。但從歷史的角度講,
2025-06-23 14:37
【總結(jié)】Mathwang幾個經(jīng)典不等式的關(guān)系一幾個經(jīng)典不等式(1)均值不等式設是實數(shù),等號成立.(2)柯西不等式設是實數(shù),則當且僅當或存在實數(shù),使得時,等號成立.(3)排序不等式設,為兩個數(shù)組,是的任一排列,則當且僅當或時,等號成立.(4)切比曉夫不等式對于兩個數(shù)組:,,有當且僅當或時,等號成立.二相關(guān)證明(1)用排
2025-04-17 08:24
【總結(jié)】一般形式介紹舉例分析復習練習本課小結(jié)作業(yè):課本41P第1、2、3題一般形式的柯西不等式課堂練習上一節(jié)課,我們認識了二維形式的柯西不等式,運用該不等式可以求一些最值及證明一些不等式.下面我們來做幾個鞏固練習:1.已知,ab為任意實數(shù),求證:4422332(
2025-08-01 17:29
【總結(jié)】第三講柯西不等式與排序不等式一二維形式的柯西不等式若a,b,c,d都是實數(shù),則(a2+b2)(c2+d2)≥(ac+bd)2當且僅當ad=bc時,等號成立.定理1(二維形式的柯西不等式):你能證明嗎?推論22222222||abcdacbdabc
2025-07-23 10:08
【總結(jié)】有些不等式不僅形式優(yōu)美而且具有重要的應用價值,人們稱它們?yōu)榻?jīng)典不等式.如均值不等式:1212(,1,2,,)nnniaaaaaaaRinn??????≥.本節(jié),我們來學習數(shù)學上兩個有名的經(jīng)典不等式:柯西不等式與排序不等式,知道它的意義、背景、證明方法及其
2025-07-26 13:38
【總結(jié)】安慶師范學院數(shù)學與計算科學學院2012屆畢業(yè)論文柯西施瓦茨不等式的應用及推廣作者:查敏指導老師:蔡改香摘要本文探討的是柯西施瓦茨不等式在不同數(shù)學領(lǐng)域的各種形式和內(nèi)容及其多種證明方法和應用,,反映了柯西施瓦茨不等式在證明相關(guān)的數(shù)學命題時可以使得解題方法得以簡捷明快,甚至可以得到一步到位的效果,特別是在概率統(tǒng)計中的廣泛應用.關(guān)鍵詞
2025-06-23 14:32
【總結(jié)】本科畢業(yè)設計(論文)(20xx屆)題目:不等式的證明及其運用專業(yè):數(shù)學與應用數(shù)學班級:09數(shù)學與應用數(shù)學姓名:王乃澤學
2025-07-10 15:39
【總結(jié)】天津理工大學2011屆本科畢業(yè)論文目錄第一章緒論 1第二章切比雪夫不等式的基本理論 3切比雪夫不等式的有限形式和積分形式 3切比雪夫不等式的概率形式 4第三章切比雪夫不等式在概率論中的應用 7估計概率 7隨機變量取值的離散程度 7隨機變量取值偏離超過的概率 7估計事件的概率 7估計隨機變量落入有限區(qū)間的概率 8求解
2025-06-23 00:35
【總結(jié)】本科畢業(yè)論文(設計)題目:Jensen不等式的推廣 院(系)專業(yè):數(shù)學系(數(shù)學與應用數(shù)學)學生姓名:馮德文學號:2003701107導師(職稱):楊慧
2025-01-16 06:29
【總結(jié)】《柯西不等式》單元測試題(1)班級姓名一、選擇題:1.已知a,b∈R,a2+b2=4,則3a+2b的最大值為( )A.4 B.2 C.8 D.92.設x,y,m,n0,且+=1,則u=x+y的最小值是( )A.(+)2B.+C.m+nD.(m+n)2