【總結】逆定理(一)勾股定理如果直角三角形兩直角邊分別為a,b,斜邊為c,那么a2+b2=c2學習目標1、探究并證明勾股定的逆定理,并能運用勾股定理的逆定理判斷一個三角形是否是直角三角形;2、了解原命題、逆命題、原定理、逆定理、勾股數(shù)的概念,并了解原命題是真命題,它的逆命題不一定是真命題。
2024-11-21 05:35
【總結】勾股定理的逆定理一、說教材(一)教材分析本節(jié)內(nèi)容選自《人教版》義務教育課程標準實驗教科書數(shù)學八年級下冊第十八章《勾股定理》中的第二節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學習的一個直角三角形的判斷定理,它是前面知識的繼續(xù)和深化,勾股定理的逆定理是初中幾何學習中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應用,同時在應用中滲透了利用代數(shù)計算
2025-05-12 05:16
【總結】勾股定理的逆定理說課稿 勾股定理的逆定理說課稿1各位考官,大家好,我是X號考生,今天我說課的內(nèi)容是《勾股定理的逆定理》。根據(jù)新課程標準,我將以教什么,怎么教,為什么這么教為思路開展我的說課,首先...
2024-12-06 22:46
【總結】惠東縣初中教案編寫評比八年級數(shù)學(人教版)§(第一課時)編寫者單位:編寫者:編寫日期:2012-6-28《》教學設計教????材義務教育課程標準實驗教科書(人教版)《數(shù)學》八年級下冊設計理念從學生已有的生活經(jīng)驗和認知基礎
2025-04-16 23:55
【總結】勾股定理的逆定理教案 勾股定理的逆定理教案1一、內(nèi)容和內(nèi)容解析 1。內(nèi)容 應用勾股定理及勾股定理的逆定理解決實際問題。 2。內(nèi)容解析 運用勾股定理的逆定理可以從三角形...
【總結】三垂線定理aAPoα什么叫平面的斜線、垂線、射影?如果aα,a⊥AO,思考a與PO的位置關系如何?aAPoαPO是平面α的斜線,O為斜足;PA是平面α的垂線,A為垂
2024-11-07 02:37
【總結】九年級數(shù)學(上冊)第一章證明(二)(1)性質(zhì)定理與逆定理陽泉市義井中學高鐵牛駛向勝利的彼岸角平分線?你還能利用折紙的方法得到角平分線及角平分線上的點嗎?回顧思考已知:如圖,OC是∠AOB的平分線,P是OC上任意一點,PD⊥OA,PE⊥OB,垂足分別是D,E.求證:PD=P
2024-11-09 02:59
【總結】三垂線定理及其逆定理知識點:;;;;教學過程:1.三垂線定理:平面內(nèi)一條直線,如果和這個平面的一條斜線在平面內(nèi)的射影垂直,那么這條直線就和這條斜線垂直;已知:分別是平面的垂線和斜線,是在平面的射影,。求證:;證明:說明:(1)線射垂直(平面問題)線斜垂直(空間問題);(2)證明線線垂直的方法:定義法;線線垂直判定定理;三垂線定理;
2025-06-19 19:06
【總結】勾股定理的逆定理人教版數(shù)學八年級下冊.重點、互逆定理難點3.能靈活運用勾股定理的逆定理解決實際問題.重點學習目標(1)在Rt△ABC,∠C=90°,a=8,b=15,則c=.(2)在Rt△ABC,∠B=90
2025-07-18 12:59
【總結】自貢世紀錦程教育教案教師姓名學科教室年級授課時間內(nèi)容學習目標重點難點教學過程一、三角形的邊1、按照三個內(nèi)角的大小,可以將三角形分為2、三角形按邊可分為3、三角形三邊的關系:
2025-01-14 23:12
【總結】1對1個性化教案學生陳桂浩學校年級教師張玉妮授課日期授課時段課題勾股定理的逆定理與應用重點難點1、勾股定理及應用2、用勾股定理證明一個三角形是直角三角形教學步驟及教學內(nèi)容導入—【知識點回
2025-06-22 03:44
【總結】勾股定理的逆定理專題訓練1.給出下列幾組數(shù):①;②8,15,16;③n2-1,2n,n2+1;④m2-n2,2mn,m2+n2(mn0).其中—定能組成直角三角形三邊長的是().A.①②B.③④C.①③④D.④2.下列各組數(shù)能構成直角三角形三邊長的是().A.1,2,3B.4,5,6C.12,13,14
2025-03-24 13:00
【總結】平行線的判定1定義2三線位置關系定理(本節(jié)課可證)3角的關系公理(同位角)定理(內(nèi)錯角和同旁
2025-08-23 11:11
【總結】17.2勾股定理的逆定理(二)人教版八年級唐山市第六十中學一、教學目標1.靈活應用勾股定理及逆定理解決實際問題。2.進一步加深性質(zhì)定理與判定定理之間關系的認識3.應用勾股定理的逆定理判斷一個三角形是否是直角三角形。4.靈活應用勾股定理及逆定理解綜合題。二、重點、難點重點:1.靈活應用勾股定理及逆定理解決實際問題。2.利用勾股定理及逆定理解綜合題
2025-08-04 09:11
【總結】(1)性質(zhì)定理與逆定理駛向勝利的彼岸角平分線?你還能利用折紙的方法得到角平分線及角平分線上的點嗎?回顧思考已知:如圖,OC是∠AOB的平分線,P是OC上任意一點,PD⊥OA,PE⊥OB,垂足分別是D,E.求證:PD=PE.而△OPD≌△OPE的條件由已知易知它
2024-09-30 10:14