freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

數(shù)列中an及sn的關(guān)系-資料下載頁

2025-06-25 02:18本頁面
  

【正文】 an}的前n項和Sn=,n∈N*.(1)求數(shù)列{an}的通項公式;(2)設(shè)bn=2an+(-1)nan,求數(shù)列{bn}的前2n項和.【解】(1)當(dāng)n=1時,a1=S1=1;當(dāng)n≥2時,an=Sn-Sn-1=-=n.又a1=1滿足上式,故數(shù)列{an}的通項公式為an=n.(2)由(1)知,bn=2n+(-1)nn,記數(shù)列{bn}的前2n項和為T2n,則T2n=(21+22+…+22n)+(-1+2-3+4-…+2n).記A=21+22+…+22n,B=-1+2-3+4-…+2n,則A==22n+1-2,B=(-1+2)+(-3+4)+…+[-(2n-1)+2n]=n.故數(shù)列{bn}的前2n項和T2n=A+B=22n+1+n-2.11.已知數(shù)列{an}是各項均為正數(shù)的等比數(shù)列,a3=4,{an}的前3項和為7.(1)求數(shù)列{an}的通項公式;(2)若a1b1+a2b2+…+anbn=(2n-3)2n+3,設(shè)數(shù)列{bn}的前n項和為Sn,求證:++…+≤2-.【解】(1)設(shè)數(shù)列{an}的公比為q,由已知得q0,且∴∴數(shù)列{an}的通項公式為an=2n-1.(2)【證明】當(dāng)n=1時,a1b1=1,且a1=1,解得b1=1.當(dāng)n≥2時,anbn=(2n-3)2n+3-(2n-2-3)2n-1-3=(2n-1)2n-1.∵an=2n-1,∴當(dāng)n≥2時,bn=2n-1.∵b1=1=21-1滿足bn=2n-1,∴數(shù)列{bn}的通項公式為bn=2n-1(n∈N*).∴數(shù)列{bn}是首項為1,公差為2的等差數(shù)列.∴Sn=n2. ∴當(dāng)n=1時,=1=2-. 當(dāng)n≥2時,=<=-.∴++…+≤2-+-+…+-=2-.12.設(shè)數(shù)列{an}的前n項和為Sn,a1=1,an=+2 (n-1) (n∈N*).(1)求證:數(shù)列{an}為等差數(shù)列,并分別寫出an和Sn關(guān)于n的表達(dá)式;(2)是否存在自然數(shù)n,使得S1+++…+-(n-1)2=2 013?若存在,求出n的值;若不存在,請說明理由.【解】(1)由an=+2(n-1),得Sn=nan-2n(n-1) (n∈N*).當(dāng)n≥2時,an=Sn-Sn-1=nan-(n-1)an-1-4(n-1),即an-an-1=4,故數(shù)列{an}是以1為首項,以4為公差的等差數(shù)列.于是,an=4n-3,Sn==2n2-n (n∈N*).(2)由Sn=nan-2n(n-1),得=2n-1 (n∈N*),又S1+++…+-(n-1)2=1+3+5+7+…+(2n-1)-(n-1)2=n2-(n-1)2=2n-1.令2n-1=2 013,得n=1 007,即存在滿足條件的自然數(shù)n=1 007.1.已知Sn為正項數(shù)列{an}的前n項和,且滿足Sn=a+an(n∈N*).(1)求a1,a2,a3,a4的值;(2)求數(shù)列{an}的通項公式.【解】(1)由Sn=a+an,可得a1=a+a1,解得a1=1;S2=a1+a2=a+a2,解得a2=2;同理,a3=3,a4=4.(2)Sn=a+an,①當(dāng)n≥2時,Sn-1=a+an-1,②①-②得(an-an-1-1)(an+an-1)=0.由于an+an-1≠0,所以an-an-1=1,又由(1)知a1=1,故數(shù)列{an}是首項為1,公差為1的等差數(shù)列,故an=n.2.在數(shù)列{an}中,a1=-5,a2=-2,記A(n)=a1+a2+…+an,B(n)=a2+a3+…+an+1,C(n)=a3+a4+…+an+2(n∈N*),若對于任意n∈N*,A(n),B(n),C(n)成等差數(shù)列.(1)求數(shù)列{an}的通項公式;(2)求數(shù)列{|an|}的前n項和.【解】(1)根據(jù)題意A(n),B(n),C(n)成等差數(shù)列,∴A(n)+C(n)=2B(n),整理得an+2-an+1=a2-a1=-2+5=3,∴數(shù)列{an}是首項為-5,公差為3的等差數(shù)列,∴an=-5+3(n-1)=3n-8.(2)|an|=記數(shù)列{|an|}的前n項和為Sn.當(dāng)n≤2時,Sn==-+n;當(dāng)n≥3時,Sn=7+=-n+14,綜上,Sn=3.(2014廣東卷)設(shè)各項均為正數(shù)的數(shù)列{an} 的前n 項和為Sn ,且 Sn滿足 S-(n2+n-3)Sn-3(n2+n)=0,n∈N*.(1)求a1 的值;(2)求數(shù)列{an} 的通項公式;(3)證明:對一切正整數(shù)n ,有++…+.【解】(1)由題意知,S-(n2+n-3)Sn-3(n2+n)=0,n∈N*.令n=1,有S-(12+1-3)S1-3(12+1)=0,可得S+S1-6=0,解得S1=-3或2,即a1=-3或2,又an為正數(shù),所以a1=2.(2)由S-(n2+n-3)Sn-3(n2+n)=0,n∈N*可得,(Sn+3)(Sn-n2-n)=0,則Sn=n2+n或Sn=-3,又?jǐn)?shù)列{an}的各項均為正數(shù),∴Sn=n2+n,Sn-1=(n-1)2+(n-1),當(dāng)n≥2時,an=Sn-Sn-1=n2+n-[(n-1)2+(n-1)]=2n.又a1=2=21,所以an=2n.(3)證明:當(dāng)n=1時,==<成立;當(dāng)n≥2時,=<=,∴++…+<+=+<+=.所以對一切正整數(shù)n,有++…+<. 專業(yè)整理分享
點擊復(fù)制文檔內(nèi)容
規(guī)章制度相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1