【總結】第二章二次函數(shù)1二次函數(shù)1.探索并歸納二次函數(shù)的定義.2.能夠表示簡單變量之間的二次函數(shù)關系.函數(shù)變量之間的關系一次函數(shù)y=kx+b(k≠0)反比例函數(shù)二次函數(shù)正比例函數(shù)y=kx(k≠0)??.0??kxky某果園有100棵橙子樹,每一棵樹平均結600個橙子.
2025-06-15 02:53
【總結】3確定二次函數(shù)的表達式【基礎梳理】確定二次函數(shù)表達式的一般方法已知條件選用表達式的形式頂點和另一點的坐標_______二次函數(shù)各項系數(shù)中的一個和兩點的坐標_______三個點的坐標_______頂點式一般式一般式【自我診斷】1.(1)確定二次函數(shù)的表達式一般需要三個條件.(
2025-06-14 06:48
2025-06-12 13:43
【總結】第二章二次函數(shù)本專題包括求圖形面積的最值問題、求拋物線形運動問題、求拋物線形建筑物問題、求銷售中最大利潤問題,是中考??嫉念}型,特別是利潤問題,是近年考查的熱點題型.類型1求面積(體積)的最值問題1.如圖,有一塊邊長為6cm的正三角形紙板,在它的三個角處分別截去一個彼此全等的箏形,再沿圖中的虛線折起,做成一個無蓋的
2025-06-12 00:36
【總結】小結與復習第二章二次函數(shù)要點梳理考點講練課堂小結課后作業(yè)一、二次函數(shù)的定義要點梳理1.一般地,如果y=ax2+bx+c(a,b,c是常數(shù),a≠0),那么y叫做x的二次函數(shù).特別地,當a≠0,b=c=0時,y=ax2是二次函數(shù)的特殊形式.2.二次函數(shù)的三種基本形式(1)一般式:y=ax2
2025-06-14 03:01
2025-06-14 02:05
【總結】本章中考演練1.(上海中考)下列對二次函數(shù)y=x2-x的圖象的描述,正確的是(C)y軸2.(瀘州中考)已知二次函數(shù)y=ax2+2ax+3a2+3(其中x是自變量),當x≥2時,y隨x的增大而增大,且-2≤x≤1時,y的
【總結】謝謝觀看Thankyouforwatching!
2025-06-13 16:15
【總結】章末小結與提升二次函數(shù)描述的關系實際問題二次函數(shù)概念二次函數(shù)??=????2的平移上、下平移|??|個單位長度:??=????2+??左、右平移|?|個單位長度:??=??(??-?)2上、下平移|??|個單位長度,左、右平移|?
【總結】◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三階)◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三階)◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三階)◆知識導航◆典例導學◆反饋演練(◎
2025-06-12 12:35
2025-06-13 20:04
【總結】第二章二次函數(shù)本專題包括二次函數(shù)的圖象及性質(zhì)的簡單應用、二次函數(shù)圖象上點的坐標特點、二次函數(shù)圖象的平移變換等內(nèi)容,屬于中考熱點問題,熟練掌握二次函數(shù)的圖象及性質(zhì)、對稱軸、頂點坐標、二次函數(shù)的最值等知識點是解題的關鍵.類型1二次函數(shù)的圖象及應用y=ax2+bx+c(a≠0)的圖象如圖所示,下列結論:①a0;②該函數(shù)的圖象關
【總結】第二章二次函數(shù)知識點1二次函數(shù)與一元二次方程的關系1.(陜西中考)下列關于二次函數(shù)y=ax2-2ax+1(a1)的圖象與x軸交點的判斷,正確的是(D),且它位于y軸右側,且它們均位于y軸左側,且它們均位于y軸右側2.(孝感中考)如圖,拋物線y=ax2與直線y=b
2025-06-18 00:42
【總結】第二章 二次函數(shù) 本章總結提升知識框架知識框架整合提升整合提升第二章 二次函數(shù) 知識框架知識框架本章總結提升整整合合提提升升本章總結提升問題1 二次函數(shù)的圖象與性質(zhì)結合二次函數(shù)的圖象回顧二次函數(shù)的性質(zhì),例如回顧拋物線的開口方向、頂點坐標,函數(shù)的最大、最小值,思考二次函數(shù)表達式的各項系數(shù)分別決定拋物線的哪些特征.本章總結
2025-06-17 22:35