【總結】小結與復習第二章二次函數(shù)要點梳理考點講練課堂小結課后作業(yè)一、二次函數(shù)的定義要點梳理1.一般地,如果y=ax2+bx+c(a,b,c是常數(shù),a≠0),那么y叫做x的二次函數(shù).特別地,當a≠0,b=c=0時,y=ax2是二次函數(shù)的特殊形式.2.二次函數(shù)的三種基本形式(1)一般式:y=ax2
2025-06-14 03:01
2025-06-14 02:05
【總結】第二章二次函數(shù)知識點1用一般式(三點式)確定二次函數(shù)表達式(1,0),(2,0)和(0,2)三點的二次函數(shù)的表達式是(D)=2x2+x+2=x2+3x+2=x2-2x+3=x2-3x+2y軸交點的縱坐標為1,且經(jīng)過點(2,5)和(-2,13),求這個二次函數(shù)的表達式.
2025-06-18 00:27
【總結】章末小結與提升二次函數(shù)描述的關系實際問題二次函數(shù)概念二次函數(shù)??=????2的平移上、下平移|??|個單位長度:??=????2+??左、右平移|?|個單位長度:??=??(??-?)2上、下平移|??|個單位長度,左、右平移|?
2025-06-12 00:36
【總結】◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三階)◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三階)◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三階)◆知識導航◆典例導學◆反饋演練(◎
2025-06-12 12:35
【總結】確定二次函數(shù)的表達式第二章二次函數(shù)導入新課講授新課當堂練習課堂小結學習目標.(難點).(重點)導入新課復習引入y=kx+b(k≠0)有幾個待定系數(shù)?通常需要已知幾個點的坐標求出它的表達式??它的一般步驟是什么?2個2個待定系數(shù)法(1)設:(表達式)
2025-06-18 00:42
2025-06-19 07:25
【總結】第二章二次函數(shù)本專題包括二次函數(shù)的圖象及性質(zhì)的簡單應用、二次函數(shù)圖象上點的坐標特點、二次函數(shù)圖象的平移變換等內(nèi)容,屬于中考熱點問題,熟練掌握二次函數(shù)的圖象及性質(zhì)、對稱軸、頂點坐標、二次函數(shù)的最值等知識點是解題的關鍵.類型1二次函數(shù)的圖象及應用y=ax2+bx+c(a≠0)的圖象如圖所示,下列結論:①a0;②該函數(shù)的圖象關
【總結】第二章二次函數(shù)一、選擇題(每小題4分,共32分)(C)=2x+1=ax2-2x+1=x2+2=2x-1k為任意實數(shù),則拋物線y=-2(x-k)2+k的頂點在(A)y=x上y=-x上3.(寧夏中考)已知a≠0,在同一直角坐標系中,函數(shù)y=ax與y=ax2的
【總結】第二章二次函數(shù)一、選擇題(每小題4分,共32分)a萬元,經(jīng)過連續(xù)兩年的增長達到了y萬元,如果每年增長的百分率都是x,那么y與x的函數(shù)關系是(D)=x2+a=a(x-1)2=a(1-x)2=a(1+x)2:x3.243.253.26ax2+b
2025-06-18 00:40
【總結】第二章二次函數(shù)知識點1二次函數(shù)與一元二次方程的關系1.(陜西中考)下列關于二次函數(shù)y=ax2-2ax+1(a1)的圖象與x軸交點的判斷,正確的是(D),且它位于y軸右側,且它們均位于y軸左側,且它們均位于y軸右側2.(孝感中考)如圖,拋物線y=ax2與直線y=b
【總結】3確定二次函數(shù)的表達式【基礎梳理】確定二次函數(shù)表達式的一般方法已知條件選用表達式的形式頂點和另一點的坐標_______二次函數(shù)各項系數(shù)中的一個和兩點的坐標_______三個點的坐標_______頂點式一般式一般式【自我診斷】1.(1)確定二次函數(shù)的表達式一般需要三個條件.(
2025-06-14 06:48
【總結】3確定二次函數(shù)的表達式..二次函數(shù)解析式有哪幾種表達方式?一般式:y=ax2+bx+c頂點式:y=a(x-h)2+k如何求二次函數(shù)的解析式?已知二次函數(shù)圖象上三個點的坐標,可用待定系數(shù)法求其解析式.交點式:y=a(x-x1)(x-x2)解析:設所求的二次函數(shù)為y=ax2+bx+c,由條件得:
2025-06-15 03:00
2025-06-15 02:54