【總結】第四章三角形第三節(jié)全等三角形考點全等三角形的判定與性質例1(2022·河北)如圖,∠A=∠B=50°,P為AB的中點,點M為射線AC上(不與點A重合)的任意一點,連接MP,并使MP的延長線交射線BD于點N,設∠BPN=α.(1)求證:△APM≌△BPN;
2025-06-21 06:00
【總結】第四節(jié)等腰三角形考點一等腰三角形的性質與判定例1(2022·四川雅安中考)已知:如圖,在△ABC中,AB=AC,∠C=72°,BC=,以點B為圓心,BC為半徑畫弧,交AC于點D,則線段AD的長為()5【分析】根據(jù)等腰三角形的性質和三角形外角的性質,得出AD=
2025-06-15 20:43
2025-06-17 20:20
【總結】第四章三角形全等三角形考點1全等三角形的概念及性質陜西考點解讀中考說明:理解全等三角形的概念,能識別全等三角形中的對應邊,對應角。:能夠完全重合的兩個三角形叫作全等三角形。(1)全等三角形的對應邊①相等,全等三角形的對應角②相等。(2)全等三角形的對應線段(如對應角的平分線,對應邊上的中線、高)
2025-06-20 13:46
2025-06-20 14:03
【總結】第二節(jié)三角形的基礎考點一三角形的三邊關系例1(2022·福建中考)下列各組數(shù)中,能作為一個三角形三邊邊長的是()A.1,1,2B.1,2,4C.2,3,4D.2,3,5【分析】根據(jù)三角形中任意兩邊之和大于第三邊,任意兩邊之差小于第三邊,即可求解.【自主解答】
2025-06-17 20:27
【總結】第14課時 三角形與全等三角形考點梳理自主測試考點一 三角形的有關概念:由不在同一條直線上的三條線段首尾順次相接所組成的圖形.考點梳理自主測試考點二 三角形的性質邊關系:三角形任意兩邊的和大于第三邊;任意兩邊的差小于第三邊.(1)外角:三角形的一邊與另一邊的延長線組成的
2025-06-15 02:21
【總結】第二節(jié)三角形的基礎考點一三角形的三邊關系例1(2022·福建中考)下列各組數(shù)中,能作為一個三角形三邊邊長的是()A.1,1,2B.1,2,4C.2,3,4D.2,3,5【分析】根據(jù)三角形中任意兩邊之和大于第三邊,任意兩邊之差小于第三邊,即可求解.【自主解答】選
2025-06-15 20:42
【總結】第四節(jié)全等三角形考點全等三角形的判定及性質百變例題7(2022·福建)如圖,點B,E,C,F(xiàn)在一條直線上,AB=DE,AC=DF,BE=:∠A=∠D.【分析】觀察圖形,根據(jù)已知條件邊的關系,判定三角形全等,再根據(jù)全等三角形的性質得到角的關系.【自主解答】證明:∵BE=C
2025-06-12 15:58
【總結】單元思維導圖UNITFOUR第四單元三角形第17課時三角形與全等三角形考點一三角形中的重要線段課前雙基鞏固c1.[2017·長沙]一個三角形三個內(nèi)角的度數(shù)之比為1∶2∶3,則這個三角形一定是()A.銳角三角形B.直角三角形C.鈍角三
2025-06-14 20:06
【總結】第四節(jié)全等三角形考點全等三角形的判定與性質命題角度?平移型例1(2022·瀘州)如圖,EF=BC,DF=AC,DA=:∠F=∠C.【分析】由DA=EB可證得DE=AB,又因為EF=BC,DF=AC,所以可根據(jù)“SSS”證得△DEF≌△ABC,從而根據(jù)“全等三角形
2025-06-17 03:30
【總結】第四節(jié)全等三角形考點全等三角形的判定及性質命題角度?平移型例1(2022·云南省卷)如圖,點E、C在線段BF上,BE=CF,AB=DE,AC=:∠ABC=∠DEF.【分析】先證明△ABC≌△DEF,然后利用全等三角形的性質即可得證.【自主解答】證明:∵BE=CF,
2025-06-21 06:15
2025-06-12 01:33
【總結】第四章三角形相似三角形考點1比例線段陜西考點解讀中考說明:、線段的比、成比例的線段。:兩條直線被一組平行線所截,所得的對應線段成比例。(1)(2)(3)(0,0);acadbcbdbd?????2(0,0);abbacbcbc?????(0)ac
2025-06-12 12:00
【總結】第五節(jié)直角三角形與勾股定理考點一直角三角形的性質與判定例1(2022·江蘇宿遷中考)如圖,在△ABC中,∠ACB=90°,點D,E,F(xiàn)分別是AB,BC,CA的中點,若CD=2,則線段EF的長是.【分析】首先利用直角三角形斜邊上的中線等于斜邊的一半求得AB的長,然后根據(jù)三角形的
2025-06-12 15:40